References | [1] (). Global EV Outlook 2023: Trends in Batteries. Available: https://www.iea.org/reports/global-ev-outlook-2023/trends-in-batteri... [2] M. K. Al-Alawi, J. Cugley and H. Hassanin, "Techno-economic feasibility of retired electric-vehicle batteries repurpose/reuse in second-life applications: A systematic review," Energy and Climate Change, vol. 3, pp. 100086, 2022. Available: https://www.sciencedirect.com/science/article/pii/S2666278722000162. DOI: 10.1016/j.egycc.2022.100086. [3] L. Wu et al, "Physics-based battery SOC estimation methods: Recent advances and future perspectives," Journal of Energy Chemistry, vol. 89, pp. 27-40, 2024. Available: https://dx.doi.org/10.1016/j.jechem.2023.09.045. DOI: 10.1016/j.jechem.2023.09.045. [4] (Dec 14,). The Financial Implications of Inaccurate SOC in LFP Batteries. Available: https://www.accure.net/battery-knowledge/lfp-soc-estimation-challeng... [5] S. Wang et al, Multidimensional Lithium-Ion Battery Status Monitoring. (First edition ed.) Boca Raton ; London ; New York: CRC Press, 2023. [6] M. Naguib, P. Kollmeyer and A. Emadi, "Lithium-Ion Battery Pack Robust State of Charge Estimation, Cell Inconsistency, and Balancing: Review," Access, vol. 9, pp. 50570-50582, 2021. Available: https://ieeexplore.ieee.org/document/9386065. DOI: 10.1109/ACCESS.2021.3068776. [7] Z. Cui et al, "A comprehensive review on the state of charge estimation for lithium‐ion battery based on neural network," International Journal of Energy Research, vol. 46, (5), pp. 5423-5440, 2022. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/er.7545. DOI: 10.1002/er.7545. [8] M. A. Hannan et al, "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable & Sustainable Energy Reviews, vol. 78, pp. 834-854, 2017. Available: https://dx.doi.org/10.1016/j.rser.2017.05.001. DOI: 10.1016/j.rser.2017.05.001. [9] S. D.V.S.R., C. Badachi and R. C. Green II, "A review on data-driven SOC estimation with Li-Ion batteries: Implementation methods & future aspirations," Journal of Energy Storage, vol. 72, pp. 108420, 2023. Available: https://dx.doi.org/10.1016/j.est.2023.108420. DOI: 10.1016/j.est.2023.108420. [10] K. S. Ng et al, "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied Energy, vol. 86, (9), pp. 1506-1511, 2009. Available: https://dx.doi.org/10.1016/j.apenergy.2008.11.021. DOI: 10.1016/j.apenergy.2008.11.021. [11] H. He et al, "Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles," Energy (Oxford), vol. 39, (1), pp. 310-318, 2012. Available: https://dx.doi.org/10.1016/j.energy.2012.01.009. DOI: 10.1016/j.energy.2012.01.009. [12] W. S. Rui Xiong, Advanced Battery Management Technologies for Electric Vehicles. (1st ed.) Newark: John Wiley & Sons, Ltd, 2019. [13] E. Almaita et al, "State of charge estimation for a group of lithium-ion batteries using long short-term memory neural network," Journal of Energy Storage, vol. 52, pp. 104761, 2022. Available: https://dx.doi.org/10.1016/j.est.2022.104761. DOI: 10.1016/j.est.2022.104761. [14] F. Feng et al, "Co-estimation of lithium-ion battery state of charge and state of temperature based on a hybrid electrochemical-thermal-neural-network model," Journal of Power Sources, vol. 455, pp. 227935, 2020. Available: https://dx.doi.org/10.1016/j.jpowsour.2020.227935. DOI: 10.1016/j.jpowsour.2020.227935. [15] I. B. Espedal et al, "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies (Basel), vol. 14, (11), pp. 3284, 2021. Available: https://search.proquest.com/docview/2539699219. DOI: 10.3390/en14113284. [16] S. V. Kishore N and V. S. Sravan Kumar, "Comparative analysis of model-based approaches for state-of-charge estimation in batteries," in Nov 24, 2022, pp. 1-6. [17] S. Sunil, B. Balasingam and K. R. Pattipati, "State-of-charge estimation of batteries using the extended kalman filter: Insights into performance analysis and filter tuning," in Dec 9, 2022, pp. 1-6. [18] Y. Zeng, Y. Li and T. Yang, "State of Charge Estimation for Lithium-Ion Battery Based on Unscented Kalman Filter and Long Short-Term Memory Neural Network," Batteries (Basel), vol. 9, (7), pp. 358, 2023. Available: https://doaj.org/article/33466da870d64b1f8996e2764d055080. DOI: 10.3390/batteries9070358. [19] W. Zhou et al, "Review on the Battery Model and SOC Estimation Method," Processes, vol. 9, (9), pp. 1685, 2021. Available: https://search.proquest.com/docview/2576497406. DOI: 10.3390/pr9091685. [20] M. S. Hossain Lipu et al, "Data-driven state of charge estimation of lithium-ion batteries: Algorithms, implementation factors, limitations and future trends," Journal of Cleaner Production, vol. 277, pp. 124110, 2020. Available: https://dx.doi.org/10.1016/j.jclepro.2020.124110. DOI: 10.1016/j.jclepro.2020.124110. [21] F. Yang et al, "State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network," Energy (Oxford), vol. 175, pp. 66-75, 2019. Available: https://dx.doi.org/10.1016/j.energy.2019.03.059. DOI: 10.1016/j.energy.2019.03.059. [22] Q. Gong, P. Wang and Z. Cheng, "A novel deep neural network model for estimating the state of charge of lithium-ion battery," Journal of Energy Storage, vol. 54, pp. 105308, 2022. Available: https://dx.doi.org/10.1016/j.est.2022.105308. DOI: 10.1016/j.est.2022.105308. [23] X. Fan et al, "SOC estimation of Li-ion battery using convolutional neural network with U-Net architecture," Energy (Oxford), vol. 256, pp. 124612, 2022. Available: https://dx.doi.org/10.1016/j.energy.2022.124612. DOI: 10.1016/j.energy.2022.124612. [24] B. Fu et al, "An improved neural network model for battery smarter state-of-charge estimation of energy-transportation system," Green Energy and Intelligent Transportation, vol. 2, (2), pp. 100067, 2023. Available: https://dx.doi.org/10.1016/j.geits.2023.100067. DOI: 10.1016/j.geits.2023.100067. [25] S. D.V.S.R., C. Badachi and R. C. Green II, "A review on data-driven SOC estimation with Li-Ion batteries: Implementation methods & future aspirations," Journal of Energy Storage, vol. 72, pp. 108420, 2023. Available: https://dx.doi.org/10.1016/j.est.2023.108420. DOI: 10.1016/j.est.2023.108420. [26] Z. Zhang et al, "A state-of-charge estimation method based on bidirectional LSTM networks for lithium-ion batteries," in Dec 13, 2020, pp. 211-216. [27] C. Hu et al, "State of Charge Estimation for Lithium-Ion Batteries Based on TCN-LSTM Neural Networks," Jes, vol. 169, (3), pp. 30544, 2022. Available: https://iopscience.iop.org/article/10.1149/1945-7111/ac5cf2. DOI: 10.1149/1945-7111/ac5cf2. [28] J. Hao et al, "Short-term power load forecasting for larger consumer based on TensorFlow deep learning framework and clustering-regression model," in Oct 2018, pp. 1-6. [29] J. Liu et al, "Prediction of remaining useful life of multi-stage aero-engine based on clustering and LSTM fusion," Reliability Engineering & System Safety, vol. 214, pp. 107807, 2021. Available: https://dx.doi.org/10.1016/j.ress.2021.107807. DOI: 10.1016/j.ress.2021.107807. [30] H. Yu et al, "Corn Leaf Diseases Diagnosis Based on K-Means Clustering and Deep Learning," Access, vol. 9, pp. 143824-143835, 2021. Available: https://ieeexplore.ieee.org/document/9576102. DOI: 10.1109/ACCESS.2021.3120379. [31] A. R. Khan et al, "Brain tumor segmentation using K‐means clustering and deep learning with synthetic data augmentation for classification," Microscopy Research and Technique, vol. 84, (7), pp. 1389-1399, 2021. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/jemt.23694. DOI: 10.1002/jemt.23694. [32] P. J. Kollmeyer et al. (). Tesla Model 3 2170 Li-ion Cell Dataset and Battery SOC Estimation Blind Modeling Tool. Available: V1 https://doi.org/10.5683/SP3/ZVTR4B. DOI: 10.5683/SP3/ZVTR4B. [33] R. N. Vieira et al, "Feedforward and NARX neural network battery state of charge estimation with robustness to current sensor error," in Jun 21, 2023, pp. 1-6. [34] V. Pendyala and F. Nishanth, "Development of a machine learning technique to accurately estimate battery state of charge," in Dec 9, 2022, pp. 1-6. [35] A. E. Ezugwu et al, "A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects," Engineering Applications of Artificial Intelligence, vol. 110, pp. 104743, 2022. Available: https://dx.doi.org/10.1016/j.engappai.2022.104743. DOI: 10.1016/j.engappai.2022.104743. [36] E. B. Osunwoke et al, "A machine learning-enabled clustering approach for large-scale classification of solar data," in Nov 14, 2021, pp. 1. [37] C. Sánchez-Rebollo et al, "Detection of jihadism in social networks using big data techniques supported by graphs and fuzzy clustering," Complexity, vol. 2019, 2019. [38] O. OZDEMİR and A. KAYA, "Effect of Parameter Selection on Fuzzy Clustering," Mehmet Akif Ersoy Üniversitesi Uygulamalı Bilimler Dergisi, vol. 2, (1), pp. 22-33, 2018. . DOI: 10.31200/makuubd.348688. [39] F. Kratzert et al, "Rainfall-runoff modelling using long short-term memory (lstm) networks," Hydrology and Earth System Sciences, vol. 22, (11), pp. 6005-6022, 2018. Available: https://search.proquest.com/docview/2136490956. DOI: 10.5194/Hess-22-6005-2018. [40] B. Leibe et al, "Spatio-temporal LSTM with trust gates for 3D human action recognition," in Computer Vision - ECCV 2016Anonymous Switzerland: Springer International Publishing AG, 2016, pp. 816-833. [41] C. Han and X. Fu, "Challenge and Opportunity: Deep Learning-Based Stock Price Prediction by Using Bi-Directional LSTM Model," Frontiers in Business, Economics and Management, vol. 8, (2), pp. 51-54, 2023. Available: https://explore.openaire.eu/search/result?id=doi_________::ef993f05447450f19f358a6de8764d72. DOI: 10.54097/fbem.v8i2.6616. [42] H. Jiang et al, "Construction and Analysis of Emotion Computing Model Based on LSTM," Complexity (New York, N.Y.), vol. 2021, pp. 1-12, 2021. Available: https://dx.doi.org/10.1155/2021/8897105. DOI: 10.1155/2021/8897105. [43] F. Yang et al, "State-of-charge estimation of lithium-ion batteries using LSTM and UKF," Energy (Oxford), vol. 201, pp. 117664, 2020. Available: https://dx.doi.org/10.1016/j.energy.2020.117664. DOI: 10.1016/j.energy.2020.117664. [44] J. Chen et al, "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy (Oxford), vol. 262, pp. 125375, 2023. Available: https://dx.doi.org/10.1016/j.energy.2022.125375. DOI: 10.1016/j.energy.2022.125375. [45] Z. Chen et al, "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy (Oxford), vol. 228, pp. 120630, 2021. Available: https://dx.doi.org/10.1016/j.energy.2021.120630. DOI: 10.1016/j.energy.2021.120630. [46] S. Montaha et al, "TimeDistributed-CNN-LSTM: A Hybrid Approach Combining CNN and LSTM to Classify Brain Tumor on 3D MRI Scans Performing Ablation Study," Access, vol. 10, pp. 60039-60059, 2022. Available: https://ieeexplore.ieee.org/document/9786658. DOI: 10.1109/ACCESS.2022.3179577. [47] F. Karim, S. Majumdar and H. Darabi, "Insights Into LSTM Fully Convolutional Networks for Time Series Classification," Access, vol. 7, pp. 67718-67725, 2019. Available: https://ieeexplore.ieee.org/document/8713870. DOI: 10.1109/ACCESS.2019.2916828. [48] N. S. Ranawat et al, "Performance evaluation of LSTM and Bi-LSTM using non-convolutional features for blockage detection in centrifugal pump," Engineering Applications of Artificial Intelligence, vol. 122, pp. 106092, 2023. Available: https://dx.doi.org/10.1016/j.engappai.2023.106092. DOI: 10.1016/j.engappai.2023.106092. |
---|