References | References [1] P. Malhotra, R.W. Hyers, J.F. Manwell, J.G. McGowan A review and design study of blade testing systems for utility-scale wind turbines Renew Sustain Energy Rev, 16 (2012), pp. 284-292 View PDF View articleView in ScopusGoogle Scholar [2] N.C. Batista, R. Melício, V.M.F. Mendes, M. Calderón, A. Ramiro On a self-start Darrieus wind turbine: blade design and field tests Renew Sustain Energy Rev, 52 (2015), pp. 508-522 View PDF View articleView in ScopusGoogle Scholar [3] P.J. Schubel, R.J. Crossley Wind turbine blade design review Wind Eng, 36 (2012), pp. 365-388 View in ScopusGoogle Scholar [4] L. Mishnaevsky, P. Brøndsted Statistical modelling of compression and fatigue damage of unidirectional fiber reinforced composites Compos Sci Technol, 69 (2009), pp. 477-484, 10.1016/j.compscitech.2008.11.024 View PDF View articleView in ScopusGoogle Scholar [5] J. Zangenberg, P. Brøndsted, M. Koefoed Design of a fibrous composite preform for wind turbine rotor blades Mater Des, 56 (2014), pp. 635-641 1980-2015 View PDF View articleView in ScopusGoogle Scholar [6] A. V Pradeep, S.V.S. Prasad, L. V Suryam, P.P. Kumari A comprehensive review on contemporary materials used for blades of wind turbine Mater Today Proc, 19 (2019), pp. 556-559 Google Scholar [7] B. Hayman, J. Wedel-Heinen, P. Brøndsted Materials challenges in present and future wind energy MRS Bull, 33 (2008), pp. 343-353 CrossrefView in ScopusGoogle Scholar [8] A. Cooperman, A. Eberle, E. Lantz Wind turbine blade material in the United States: quantities, costs, and end-of-life options Resour Conserv Recycl, 168 (2021), Article 105439 View PDF View articleView in ScopusGoogle Scholar [9] A. Rashedi, I. Sridhar, K.J. Tseng Multi-objective material selection for wind turbine blade and tower: ashby's approach Mater Des, 37 (2012), pp. 521-532 View PDF View articleView in ScopusGoogle Scholar [10] N. Karthikeyan, R.B. Anand, T. Suthakar, S. Barhate Materials, innovations and future research opportunities on wind turbine blades—insight review Environ Prog Sustain Energy, 38 (2019), Article e13046 View in ScopusGoogle Scholar [11] L. Thomas, M. Ramachandra Advanced materials for wind turbine blade-A Review Mater Today Proc, 5 (2018), pp. 2635-2640 View PDF View articleView in ScopusGoogle Scholar [12] D. Ancona, J. McVeigh Wind turbine-materials and manufacturing fact sheet Princeton energy resources international, vol. 19, LLC (2001) Google Scholar [13] N. Karthikeyan, K.K. Murugavel, S.A. Kumar, S. Rajakumar Review of aerodynamic developments on small horizontal axis wind turbine blade Renew Sustain Energy Rev, 42 (2015), pp. 801-822 View PDF View articleView in ScopusGoogle Scholar [14] L. Wang, X. Liu, A. Kolios State of the art in the aeroelasticity of wind turbine blades: aeroelastic modelling Renew Sustain Energy Rev, 64 (2016), pp. 195-210 View PDF View articleGoogle Scholar [15] S. ed-D. Fertahi, T. Belhadad, A. Kanna, A. Samaouali, I. Kadiri, A. Arid, E. Benini, R. Agounoun, T. El Rhafiki, N.E. El Kadri Elyamani 3D CFD modeling for the limits’ identification of 2D flow pattern’s effects on the aerodynamic performance of a reference H-Darrieus prototype, International Journal on Interactive Design and Manufacturing (IJIDeM), 17 (2023), pp. 3229-3278 CrossrefView in ScopusGoogle Scholar [16] A. Arias-Rosales, G. Osorio-Gómez Albatros Create: an interactive and generative tool for the design and 3D modeling of wind turbines with wavy leading edge Int J Interact Des Manuf, 14 (2020), pp. 631-650 CrossrefView in ScopusGoogle Scholar [17] M.G. Mourad, I. Shahin, S.S. Ayad, O.E. Abdellatif, T.A. Mekhail Effect of winglet geometry on horizontal axis wind turbine performance Engineering Reports, 2 (2020), Article e12101 View in ScopusGoogle Scholar [18] Z. Li, M. Liu, X. Cao, M. Gao, L. Cheng, H. Sun Aerodynamic performance analysis and power generation characteristics experiment of vertical axis wind turbine Engineering Reports, 4 (2022), Article e12500 View in ScopusGoogle Scholar [19] G. Chen, D. Qi, Y. Yan, Y. Chen, Y. Wang, J. Mei Wasserstein‐metric‐based distributionally robust optimization method for unit commitment considering wind turbine uncertainty Engineering Reports, 5 (2023), Article e12740 View in ScopusGoogle Scholar [20] S. Adumene, A. Okoro A Markovian reliability approach for offshore wind energy system analysis in harsh environments Engineering Reports, 2 (2020), Article e12128 View in ScopusGoogle Scholar [21] Z. Li, M. Liu, X. Cao, M. Gao, L. Cheng, H. Sun Aerodynamic performance analysis and power generation characteristics experiment of vertical axis wind turbine Engineering Reports, 4 (2022), Article e12500 View in ScopusGoogle Scholar [22] M.L. Surve, P.D. Deshmukh, K.B. Sutar, B.S. Kale, K.S. Bhole Computational analysis of a new airfoil for micro-capacity wind turbine Int J Interact Des Manuf (2023), pp. 1-11 Google Scholar [23] D.M. Prabowoputra, A.R. Prabowo, S. Hadi, J.M. Sohn Assessment of turbine stages and blade numbers on modified 3D Savonius hydrokinetic turbine performance using CFD analysis Multidiscip Model Mater Struct, 17 (2020), pp. 253-272 CrossrefGoogle Scholar [24] H.M. Slot, E.R.M. Gelinck, C. Rentrop, E. Van Der Heide Leading edge erosion of coated wind turbine blades: review of coating life models Renew Energy, 80 (2015), pp. 837-848 View PDF View articleView in ScopusGoogle Scholar [25] Y. Liu, J. Hao, P. Kang, Z. Sha, F. Ma, D. Yang, S. Zhang Research on dynamic characteristics of compensation mechanism for large-power wind turbine disc brake Multidiscip Model Mater Struct, 16 (2020), pp. 595-605 CrossrefView in ScopusGoogle Scholar [26] K.H. Yu, X. Yang Torque capacity and contact stress analysis of conical interference fit shrink disc of wind turbine Multidiscip Model Mater Struct, 14 (2017), pp. 189-199 Google Scholar [27] M. yaghoub Abdollahzadeh Jamalabadi Thermal radiation effects on creep behavior of the turbine blade Multidiscip Model Mater Struct, 12 (2016), pp. 291-314 Google Scholar [28] J.F. Mandell, D.D. Samborsky, L. Wang, N.K. Wahl New fatigue data for wind turbine blade materials J Sol Energy Eng, 125 (2003), pp. 506-514 View in ScopusGoogle Scholar [29] A. Greco, S. Sheng, J. Keller, A. Erdemir Material wear and fatigue in wind turbine systems Wear, 302 (2013), pp. 1583-1591 View PDF View articleView in ScopusGoogle Scholar [30] H.J. Sutherland A summary of the fatigue properties of wind turbine materials Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 3 (2000), pp. 1-34 View in ScopusGoogle Scholar [31] M.M. Shokrieh, R. Rafiee Simulation of fatigue failure in a full composite wind turbine blade Compos Struct, 74 (2006), pp. 332-342 View PDF View articleView in ScopusGoogle Scholar [32] O. Rajad, H. Mounir, M. Rich, S. Belhouideg, C. Haidar, A. El Kasri Strength and stiffness characterization and enhancement of a horizontal axis wind turbine blade using an experimental fatigue test bench Int J Interact Des Manuf, 18 (2024), pp. 149-158 CrossrefView in ScopusGoogle Scholar [33] M. Qin, W. Shi, W. Chai, X. Fu, L. Li, X. Li Extreme structural response prediction and fatigue damage evaluation for large-scale monopile offshore wind turbines subject to typhoon conditions Renew Energy, 208 (2023), pp. 450-464 View PDF View articleView in ScopusGoogle Scholar [34] F. Villalpando, M. Reggio, A. Ilinca Prediction of ice accretion and anti-icing heating power on wind turbine blades using standard commercial software Energy, 114 (2016), pp. 1041-1052 View PDF View articleView in ScopusGoogle Scholar [35] Z. Mu, W. Guo, Y. Li, K. Tagawa Wind tunnel test of ice accretion on blade airfoil for wind turbine under offshore atmospheric condition Renew Energy, 209 (2023), pp. 42-52 View PDF View articleView in ScopusGoogle Scholar [36] Z. Liu, Y. Zhang, Y. Li Superhydrophobic coating for blade surface ice-phobic properties of wind turbines: a review Prog Org Coat, 187 (2024), Article 108145 View PDF View articleView in ScopusGoogle Scholar [37] P. Roberge, J. Lemay, J. Ruel, A. Bégin-Drolet Definition of an ice index for wind turbines in cold climate Cold Reg Sci Technol, 213 (2023), Article 103930 View PDF View articleView in ScopusGoogle Scholar [38] Y. Dai, F. Xie, B. Li, C. Wang, K. Shi Effect of blade tips ice on vibration performance of wind turbines Energy Rep, 9 (2023), pp. 622-629 View PDF View articleView in ScopusGoogle Scholar [39] T.C. Hammer, T. Willems, H. Hendrikse Dynamic ice loads for offshore wind support structure design Mar Struct, 87 (2023), Article 103335 View PDF View articleView in ScopusGoogle Scholar [40] M. Kreutz, A.A. Alla, M. Lütjen, J.-H. Ohlendorf, M. Freitag, K.-D. Thoben, F. Zimnol, A. Greulich Ice prediction for wind turbine rotor blades with time series data and a deep learning approach Cold Reg Sci Technol, 206 (2023), Article 103741 View PDF View articleView in ScopusGoogle Scholar [41] C.C.W. Chang, T.J. Ding, T.J. Ping, M. Ariannejad, K.C. Chao, S.B. Samdin Fault detection and anti-icing technologies in wind energy conversion systems: a review Energy Rep, 8 (2022), pp. 28-33 View in ScopusGoogle Scholar [42] H. Wu, F. Shi, Z. Zhang, Z. Zhong, X. Wei Effect of carbon fiber bundles spacing on composites and their electrothermal and anti/deicing properties Mater Sci Eng, B, 299 (2024), Article 117021 View PDF View articleView in ScopusGoogle Scholar [43] Y. Dai, F. Xie, B. Li, C. Wang, K. Shi Effect of blade tips ice on vibration performance of wind turbines Energy Rep, 9 (2023), pp. 622-629 View PDF View articleView in ScopusGoogle Scholar [44] A. Sohouli, M. Yildiz, A. Suleman Cost analysis of variable stiffness composite structures with application to a wind turbine blade Compos Struct, 203 (2018), pp. 681-695 View PDF View articleView in ScopusGoogle Scholar [45] P.J. Schubel Cost modelling in polymer composite applications: case study–Analysis of existing and automated manufacturing processes for a large wind turbine blade Compos B Eng, 43 (2012), pp. 953-960 View PDF View articleView in ScopusGoogle Scholar [46] W. Wu, D. Abliz, B. Jiang, G. Ziegmann, D. Meiners A novel process for cost effective manufacturing of fiber metal laminate with textile reinforced pCBT composites and aluminum alloy Compos Struct, 108 (2014), pp. 172-180 View PDF View articleView in ScopusGoogle Scholar [47] A.A.M. Ahmed, N. Bailek, L. Abualigah, K. Bouchouicha, A. Kuriqi, A. Sharifi, P. Sareh, P. Mishra, I. Colak, E.-S.M. El-kenawy Global control of electrical supply: a variational mode decomposition-aided deep learning model for energy consumption prediction Energy Rep, 10 (2023), pp. 2152-2165 Google Scholar [48] L. Liang, J. Xie, L. Liu, Y. Xia Revenue sharing contract coordination of wind turbine order policy and aftermarket service based on joint effort Ind Manag Data Syst, 117 (2017), pp. 320-345 View in ScopusGoogle Scholar [49] Y. Du, S. Zhou, X. Jing, Y. Peng, H. Wu, N. Kwok Damage detection techniques for wind turbine blades: a review Mech Syst Signal Process, 141 (2020), Article 106445 View PDF View articleGoogle Scholar [50] R. Yang, Y. He, H. Zhang Progress and trends in nondestructive testing and evaluation for wind turbine composite blade Renew Sustain Energy Rev, 60 (2016), pp. 1225-1250 View PDF View articleView in ScopusGoogle Scholar [51] F.P.G. Márquez, A.M.P. Chacón A review of non-destructive testing on wind turbines blades Renew Energy, 161 (2020), pp. 998-1010 Google Scholar [52] P.J. Schubel, R.J. Crossley, E.K.G. Boateng, J.R. Hutchinson Review of structural health and cure monitoring techniques for large wind turbine blades Renew Energy, 51 (2013), pp. 113-123 View PDF View articleView in ScopusGoogle Scholar [53] S. Gawde, S. Patil, S. Kumar, P. Kamat, K. Kotecha An explainable predictive maintenance strategy for multi-fault diagnosis of rotating machines using multi-sensor data fusion Decision Analytics Journal (2024), Article 100425 View PDF View articleView in ScopusGoogle Scholar [54] P. Ong, Y.K. Tan, K.H. Lai, C.K. Sia A deep convolutional neural network for vibration-based health-monitoring of rotating machinery Decision Analytics Journal, 7 (2023), Article 100219 View PDF View articleView in ScopusGoogle Scholar [55] J. Jiang, C. Xu, H. An Research on the effect of wind turbine bearing fault diagnosis method based on multi-feature calculation and Bayesian optimized machine learning method Int J Interact Des Manuf, 17 (2023), pp. 2687-2697 CrossrefView in ScopusGoogle Scholar [56] H. von Benzon, X. Chen Mapping damages from inspection images to 3D digital twins of large‐scale structures Engineering Reports (2024), Article e12837 Google Scholar [57] A. Carnero, C. Martín, M. Díaz Portable motorized telescope system for wind turbine blades damage detection Engineering Reports (2023), Article e12618 Google Scholar [58] F.S. Bezzaoucha, M. Sahnoun, S.M. Benslimane Multi-component modeling and classification for failure propagation of an offshore wind turbine Int J Energy Sect Manag, 15 (2021), pp. 397-420 CrossrefView in ScopusGoogle Scholar [59] I. Bouwer Utne Maintenance strategies for deep‐sea offshore wind turbines J Qual Maint Eng, 16 (2010), pp. 367-381 CrossrefGoogle Scholar [60] Z. Tian, H. Wang Wind power system reliability and maintenance optimization considering turbine and wind uncertainty J Qual Maint Eng, 28 (2022), pp. 252-273 CrossrefView in ScopusGoogle Scholar [61] P. Sareh The aesthetics of sustainable industrial design: form and function in the circular design process Sustain Dev, 32 (2024), pp. 1310-1320 CrossrefView in ScopusGoogle Scholar [62] M. Keitsch Sustainable design: a brief appraisal of its main concepts Sustain Dev, 20 (2012), pp. 180-188 CrossrefView in ScopusGoogle Scholar [63] M. Rani, P. Choudhary, V. Krishnan, S. Zafar A review on recycling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades Compos B Eng, 215 (2021), Article 108768 View PDF View articleView in ScopusGoogle Scholar [64] L. Mishnaevsky Jr. Repair of wind turbine blades: review of methods and related computational mechanics problems Renew Energy, 140 (2019), pp. 828-839 View PDF View articleView in ScopusGoogle Scholar [65] J. Chen, J. Wang, A. Ni Recycling and reuse of composite materials for wind turbine blades: an overview J Reinforc Plast Compos, 38 (2019), pp. 567-577 Google Scholar [66] D. Foxwell Blade recycling solutions sought in europe and US, riviera maritime media ltd (2020) Google Scholar [67] A.A. Morini, M.J. Ribeiro, D. Hotza Carbon footprint and embodied energy of a wind turbine blade—a case study Int J Life Cycle Assess (2021), 10.1007/s11367-021-01907-z Google Scholar [68] P. Krawczyk, A. Beyene, D. Macphee Fluid structure interaction of a morphed wind turbine blade Int J Energy Res, 37 (2013), pp. 1784-1793, 10.1002/er.2991 View in ScopusGoogle Scholar [69] X. Wang, W.Z. Shen, J.Z. Wei, N.S. Jens, J. Chen Shape optimization of wind turbine blades Wind Energy, 12 (2009), pp. 781-803, 10.1002/we.335 View in ScopusGoogle Scholar [70] M.O.L. Hansen Aerodynamics of wind turbines (second ed.) (2008), 10.4324/9781849770408 London Google Scholar [71] W.D.K. Cavens, A. Chopra, A.F. Arrieta Passive load alleviation on wind turbine blades from aeroelastically driven selectively compliant morphing Wind Energy, 24 (2021), pp. 24-38, 10.1002/we.2555 View in ScopusGoogle Scholar [72] Q. Ai, P.M. Weaver, T.K. Barlas, A.S. Olsen, H.A. Madsen, T.L. Andersen Field testing of morphing flaps on a wind turbine blade using an outdoor rotating rig Renew Energy, 133 (2019), pp. 53-65, 10.1016/j.renene.2018.09.092 View PDF View articleView in ScopusGoogle Scholar [73] D. Macphee, A. Beyene Fluid-structure interaction of a morphing symmetrical wind turbine blade subjected to variable load Int J Energy Res, 37 (2013), pp. 69-79, 10.1002/er.1925 View in ScopusGoogle Scholar [74] D.W. MacPhee, A. Beyene Fluid-structure interaction analysis of a morphing vertical axis wind turbine J Fluids Struct, 60 (2016), pp. 143-159, 10.1016/j.jfluidstructs.2015.10.010 View PDF View articleView in ScopusGoogle Scholar [75] D.W. MacPhee, A. Beyene Experimental and Fluid Structure Interaction analysis of a morphing wind turbine rotor Energy, 90 (2015), pp. 1055-1065, 10.1016/j.energy.2015.08.016 View PDF View articleView in ScopusGoogle Scholar [76] EERE The inside of a wind turbine, office of energy efficiency & renewable energy (2021) Google Scholar [77] D. Foxwell Blade recycling solutions sought in europe and US, riviera maritime media ltd (2020) Google Scholar [78] Wiebe G. Goldhofer FTV 300 blade transport device moves wind turbines up tough terrain. Craneblogger 2016. Google Scholar [79] S. Funke LM Wind Power will build wind turbine blade factory in Cherbourg, Offshore Wind Industry (2017) Google Scholar [80] H.Y. Jeong, S.C. An, I.C. Seo, E. Lee, S. Ha, N. Kim, Y.C. Jun 3D printing of twisting and rotational bistable structures with tuning elements Sci Rep, 9 (2019), 10.1038/s41598-018-36936-6 Google Scholar [81] Z. Zhang, H. Wu, X. He, H. Wu, Y. Bao, G. Chai The bistable behaviors of carbon-fiber/epoxy anti-symmetric composite shells Compos B Eng, 47 (2013), pp. 190-199, 10.1016/j.compositesb.2012.10.040 View PDF View articleView in ScopusGoogle Scholar [82] N. Mehreganian, A.S. Fallah, P. Sareh Structural mechanics of negative stiffness honeycomb metamaterials Journal of Applied Mechanics, Transactions ASME, 88 (2021), 10.1115/1.4049954 Google Scholar [83] N. Mehreganian, A.S. Fallah, P. Sareh Impact response of negative stiffness curved-beam-architected metastructures Int J Solids Struct (2023), Article 112389 View PDF View articleView in ScopusGoogle Scholar [84] N. Liu, N. Mehreganian, P. Sareh Never better than 5/6: the fundamental limit of energy absorption efficiency for negative-stiffness curved-beam honeycombs Mater Des, 243 (2024), Article 113024 View PDF View articleView in ScopusGoogle Scholar [85] N. Liu, N. Mehreganian, P. Sareh An optimized negative-stiffness bi-material honeycomb composed of straight and curved beams Proceedings of the 21st European conference on composite materials, European society for composite materials (ESCM), Nantes, France (2024) Google Scholar [86] R. Gao, M. Li, Q. Wang, J. Zhao, S. Liu A novel design method of bistable structures with required snap-through properties Sens Actuators A Phys, 272 (2018), pp. 295-300, 10.1016/j.sna.2017.12.019 View PDF View articleView in ScopusGoogle Scholar [87] Z. Zhang, Y. Li, X. Yu, X. Li, H. Wu, H. Wu, S. Jiang, G. Chai Bistable morphing composite structures: a review Thin-Walled Struct, 142 (2019), pp. 74-97, 10.1016/j.tws.2019.04.040 View PDF View articleView in ScopusGoogle Scholar [88] S.A. Emam, D.J. Inman A review on bistable composite laminates for morphing and energy harvesting Appl Mech Rev, 67 (2015), 10.1115/1.4032037 Google Scholar [89] X. Lachenal, S. Daynes, P.M. Weaver Review of morphing concepts and materials for wind turbine blade applications Wind Energy, 16 (2013), pp. 283-307, 10.1002/we.531 View in ScopusGoogle Scholar [90] L. Fan, J. Liang, Y. Chen, P. Shi, X. Feng, J. Feng, P. Sareh Multi-stability of irregular four-fold origami structures Int J Mech Sci, 268 (2024), Article 108993 View PDF View articleView in ScopusGoogle Scholar [91] S. Daynes, P.M. Weaver Review of shape-morphing automobile structures: concepts and outlook Proc Inst Mech Eng - Part D J Automob Eng, 227 (2013), pp. 1603-1622, 10.1177/0954407013496557 View in ScopusGoogle Scholar [92] J.P. Jensen, K. Skelton Wind turbine blade recycling: experiences, challenges and possibilities in a circular economy Renew Sustain Energy Rev, 97 (2018), pp. 165-176, 10.1016/j.rser.2018.08.041 View PDF View articleView in ScopusGoogle Scholar [93] Gurit, Composite Materials for Wind Energy Wind materials bro-3-0220, customer support composite materials EMEA (2020) Google Scholar [94] P. Brøndsted, H. Lilholt, A. Lystrup Composite materials for wind power turbine blades Annu Rev Mater Res, 35 (2005), pp. 505-538 CrossrefView in ScopusGoogle Scholar [95] J. Sun, Z. Chen, H. Yu, S. Gao, B. Wang, Y. Ying, Y. Sun, P. Qian, D. Zhang, Y. Si Quantitative evaluation of yaw-misalignment and aerodynamic wake induced fatigue loads of offshore Wind turbines Renew Energy, 199 (2022), pp. 71-86 View PDF View articleCrossrefGoogle Scholar [96] N. Hiremath, S. Young, H. Ghossein, D. Penumadu, U. Vaidya, M. Theodore Low cost textile-grade carbon-fiber epoxy composites for automotive and wind energy applications Compos B Eng, 198 (2020), Article 108156 View PDF View articleView in ScopusGoogle Scholar [97] A. Cooperman, A. Eberle, E. Lantz Wind turbine blade material in the United States: quantities, costs, and end-of-life options Resour Conserv Recycl, 168 (2021), Article 105439 View PDF View articleView in ScopusGoogle Scholar [98] S. Schmidt, T. Mahrholz, A. Kühn, P. Wierach Powder binders used for the manufacturing of wind turbine rotor blades. Part 1. Characterization of resin-binder interaction and preform properties Polym Compos, 39 (2018), pp. 708-717, 10.1002/pc.23988 View in ScopusGoogle Scholar [99] S. Schmidt, T. Mahrholz, A. Kühn, P. Wierach Powder binders used for the manufacturing of wind turbine rotor blades. Part 2. Investigation of binder effects on the mechanical performance of glass fiber reinforced polymers J Compos Mater, 53 (2019), pp. 2261-2270, 10.1177/0021998318824784 View in ScopusGoogle Scholar [100] I.O. Goroshko, Y.A. Zhuk, A.S. Fallah, P. Sareh Dynamic behavior of composite wind turbine blades with different material combinations: a numerical study Int Appl Mech, 57 (2021), pp. 635-643, 10.1007/s10778-022-01113-w View in ScopusGoogle Scholar [101] H. Zhang, S. Wang, K. Zhang, J. Wu, A. Li, J. Liu, D. Yang 3D printing of continuous carbon fibre reinforced polymer composites with optimised structural topology and fibre orientation Compos Struct, 313 (2023), Article 116914 View PDF View articleView in ScopusGoogle Scholar [102] T. Worzewski, R. Krankenhagen, M. Doroshtnasir, M. Röllig, C. Maierhofer, H. Steinfurth Thermographic inspection of a wind turbine rotor blade segment utilizing natural conditions as excitation source, Part I: solar excitation for detecting deep structures in GFRP Infrared Phys Technol, 76 (2016), pp. 756-766, 10.1016/j.infrared.2016.04.011 View PDF View articleView in ScopusGoogle Scholar [103] G. Rasool, A.C. Middleton, M.M. Stack Mapping raindrop erosion of GFRP composite wind turbine blade materials: perspectives on degradation effects in offshore and acid rain environmental conditions J Tribol, 142 (2020), Article 061701 View in ScopusGoogle Scholar [104] L.S.S. Al-Rukaibawi, M.J. Lukic Theoretical study on the efficiency of utilization of nanoclay-CFRP composite materials in the root area of wind turbine blades J Inst Eng, 24 (2018), 10.30544/397 Google Scholar [105] N.R. Kolanu, G. Raju, M. Ramji Experimental and numerical studies on the buckling and post-buckling behavior of single blade-stiffened CFRP panels Compos Struct, 196 (2018), pp. 135-154, 10.1016/j.compstruct.2018.05.015 View PDF View articleView in ScopusGoogle Scholar [106] P. Alam, C. Robert, C.M. Ó Brádaigh Tidal turbine blade composites - a review on the effects of hygrothermal aging on the properties of CFRP Compos B Eng, 149 (2018), pp. 248-259, 10.1016/j.compositesb.2018.05.003 View PDF View articleView in ScopusGoogle Scholar [107] S. Draghici, I. Sebastian Vintila, R. Mihalache, H. Alexandru Petrescu, C. Stelian Tuta, A. Hadar Design and fabrication of thermoplastic moulds for manufacturing CFRP composite impeller blades Mater Plast, 57 (1964), pp. 290-298, 10.37358/Mat.Plast.1964 Google Scholar [108] Z. Yuan, J. Hu, Q. Wen, K. Cheng, P. Zheng Investigation on an innovative method for high-speed low-damage micro-cutting of CFRP composites with diamond dicing blades Materials, 11 (2018), 10.3390/ma11101974 Google Scholar [109] D. Fecko High strength glass reinforcements still being discovered Reinforc Plast, 50 (2006), pp. 40-44, 10.1016/S0034-3617(06)70976-6 View PDF View articleView in ScopusGoogle Scholar [110] T.D. Ashwill Materials and innovations for large blade structures: research opportunities in wind energy technology 50th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Palm Springs, California (USA) (2009) Google Scholar [111] L. Mishnaevsky, K. Branner, H.N. Petersen, J. Beauson, M. McGugan, B.F. Sørensen Materials for wind turbine blades: an overview Materials, 10 (2017), 10.3390/ma10111285 Google Scholar [112] H. Haberkern Tailor-made reinforcements Elsevier B.V (2006), pp. 28-33, 10.1016/S0034-3617(06)70974-2 View PDF View articleView in ScopusGoogle Scholar [113] C.-H. Ong, S.W. Tsai The use of carbon fibers in wind turbine blade: a SERI-8BLADE example (2000) Google Scholar [114] L. Mishnaevsky, G. Dai Hybrid carbon/glass fiber composites: Micromechanical analysis of structure-damage resistance relationships Comput Mater Sci, 81 (2014), pp. 630-640, 10.1016/j.commatsci.2013.08.024 View PDF View articleView in ScopusGoogle Scholar [115] G. Dai, L. Mishnaevsky Carbon nanotube reinforced hybrid composites: computational modeling of environmental fatigue and usability for wind blades Compos B Eng, 78 (2015), pp. 349-360, 10.1016/j.compositesb.2015.03.073 View PDF View articleView in ScopusGoogle Scholar [116] E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren, T.W. Chou Carbon nanotube/carbon fiber hybrid multiscale composites J Appl Phys, 91 (2002), pp. 6034-6037, 10.1063/1.1466880 View in ScopusGoogle Scholar [117] J. Gotro, R.B. Prime Thermosets, encyclopedia of polymer science and technology (2002), pp. 1-75 Google Scholar [118] D. Braun, W. Von Gentzkow, A.P. Rudolf Hydrogenolytic degradation of thermosets Polym Degrad Stab, 74 (2001), pp. 25-32 View PDF View articleView in ScopusGoogle Scholar [119] J.H. Waite Marine adhesive proteins: natural composite thermosets Int J Biol Macromol, 12 (1990), pp. 139-144 View PDF View articleView in ScopusGoogle Scholar [120] J.M. Kenny, A. Apicella, L. Nicolais A model for the thermal and chemorheological behavior of thermosets. I: processing of epoxy‐based composites Polym Eng Sci, 29 (1989), pp. 973-983 CrossrefView in ScopusGoogle Scholar [121] M.R. Kamal, S. Kenig The injection molding of thermoplastics part I: theoretical model Polym Eng Sci, 12 (1972), pp. 294-301 CrossrefView in ScopusGoogle Scholar [122] R. Bonart Thermoplastic elastomers Polymer (Guildf), 20 (1979), pp. 1389-1403 View PDF View articleView in ScopusGoogle Scholar [123] R.N. Haward Strain hardening of thermoplastics Macromolecules, 26 (1993), pp. 5860-5869 CrossrefView in ScopusGoogle Scholar [124] A.F. Arrieta, I.K. Kuder, M. Rist, T. Waeber, P. Ermanni Passive load alleviation aerofoil concept with variable stiffness multi-stable composites Compos Struct, 116 (2014), pp. 235-242 View PDF View articleView in ScopusGoogle Scholar [125] R.P.Louis Nijssen, F. of A.Engineering.D. and P. of C.S.Group TU Delft, Fatigue life prediction and strength degradation of wind turbine reactor blade composites Knowledge Centre Wind turbine Materials and Constructions (2006) Google Scholar [126] S. Joncas Thermoplastic composite wind turbine blades : an integrated design approach Delft University of technology (2010) Google Scholar [127] R.E. Murray, R. Beach, D. Barnes, D. Snowberg, D. Berry, S. Rooney, M. Jenks, B. Gage, T. Boro, S. Wallen Structural validation of a thermoplastic composite wind turbine blade with comparison to a thermoset composite blade Renew Energy, 164 (2021), pp. 1100-1107 View PDF View articleView in ScopusGoogle Scholar [128] R.E. Murray, D. Penumadu, D. Cousins, R. Beach, D. Snowberg, D. Berry, Y. Suzuki, A. Stebner Manufacturing and flexural characterization of infusion-reacted thermoplastic wind turbine blade subcomponents Appl Compos Mater, 26 (2019), pp. 945-961 CrossrefView in ScopusGoogle Scholar [129] O. Erartsin, J.S.M. Zanjani, I. Baran Unravelling the interphase-bond strength relationship in novel co-bonded thermoplastic-thermoset hybrid composites for leading edge protection of wind turbine blades Polym Test, 117 (2023), Article 107856 View PDF View articleView in ScopusGoogle Scholar [130] A. Lystrup Hybrid yarn for thermoplastic fibre composites. Final report for MUP2 framework program no. 1994-503/0926-50. Summary of technical results Risø National Laboratory (1998) Google Scholar [131] M.E. Kazemi, L. Shanmugam, D. Lu, X. Wang, B. Wang, J. Yang Mechanical properties and failure modes of hybrid fiber reinforced polymer composites with a novel liquid thermoplastic resin, Elium® Compos Part A Appl Sci Manuf, 125 (2019), Article 105523 View PDF View articleView in ScopusGoogle Scholar [132] R.E. Murray, S. Jenne, D. Snowberg, D. Berry, D. Cousins Techno-economic analysis of a megawatt-scale thermoplastic resin wind turbine blade Renew Energy, 131 (2019), pp. 111-119 View PDF View articleView in ScopusGoogle Scholar [133] W. Jiang, S.C. Tjong, P.K. Chu, R.K.Y. Li, J.K. Kim, Y.W. Mai Interlaminar fracture properties of carbon fibre/epoxy matrix composites interleaved with polyethylene terephthalate (PET) films Polym Polym Compos, 9 (2001), pp. 141-145 CrossrefGoogle Scholar [134] T.D.S. Thorn, Y. Liu, X. Yao, D.G. Papageorgiou, P. Robinson, E. Bilotti, T. Peijs, H. Zhang Smart and repeatable easy-repairing and self-sensing composites with enhanced mechanical performance for extended components life Compos Part A Appl Sci Manuf, 165 (2023), Article 107337 View PDF View articleView in ScopusGoogle Scholar [135] V.A. Ramirez, P.J. Hogg, W.W. Sampson The influence of the nonwoven veil architectures on interlaminar fracture toughness of interleaved composites Compos Sci Technol, 110 (2015), pp. 103-110 View PDF View articleView in ScopusGoogle Scholar [136] C.S. Nagi, S.L. Ogin, I. Mohagheghian, C. Crean, A.D. Foreman Spray deposition of graphene nano-platelets for modifying interleaves in carbon fibre reinforced polymer laminates Mater Des, 193 (2020), Article 108831 View PDF View articleView in ScopusGoogle Scholar [137] C.H. Henry, P.A. Smith, I. Mohagheghian Variable stiffness composites for morphing and deployable application ICCM23-the 23rd international conference on composite materials, belfast, United Kingdom (2023) Google Scholar [138] D. Charaklias, D. Qiang, R. Dorey, I. Mohagheghian Rapid de-stiffening of multilayer transparent structures using controlled thermoplastic softening Smart Mater Struct, 32 (2023), Article 115020 CrossrefView in ScopusGoogle Scholar [139] H.W. Zhou, L. Mishnaevsky, H.Y. Yi, Y.Q. Liu, X. Hu, A. Warrier, G.M. Dai Carbon fiber/carbon nanotube reinforced hierarchical composites: effect of CNT distribution on shearing strength Compos B Eng, 88 (2016), pp. 201-211, 10.1016/j.compositesb.2015.10.035 View PDF View articleView in ScopusGoogle Scholar [140] P.C. Ma, Y. Zhang Perspectives of carbon nanotubes/polymer nanocomposites for wind blade materials Renew Sustain Energy Rev, 30 (2014), pp. 651-660, 10.1016/j.rser.2013.11.008 View PDF View articleView in ScopusGoogle Scholar [141] A.J. Kinloch, A.C. Taylor, M. Techapaitoon, W.S. Teo, S. Sprenger From matrix nano- and micro-phase tougheners to composite macro-properties Philosophical transactions of the royal society A: mathematical, physical and engineering sciences, Royal Society of London (2016), 10.1098/rsta.2015.0275 Google Scholar [142] O. Yirtici, I.H. Tuncer Aerodynamic shape optimization of wind turbine blades for minimizing power production losses due to icing Cold Reg Sci Technol, 185 (2021), Article 103250 View PDF View articleView in ScopusGoogle Scholar [143] A.J. Lee, D.J. Inman A multifunctional bistable laminate: snap-through morphing enabled by broadband energy harvesting J Intell Mater Syst Struct, 29 (2018), pp. 2528-2543 CrossrefView in ScopusGoogle Scholar [144] I.K. Kuder, A.F. Arrieta, P. Ermanni Design space of embeddable variable stiffness bi-stable elements for morphing applications Compos Struct, 122 (2015), pp. 445-455 View PDF View articleView in ScopusGoogle Scholar [145] A.P. Kumar, P.M. Anilkumar, A. Haldar, S. Scheffler, O. Dorn, B.N. Rao, R. Rolfes Investigations on the multistability of series-connected unsymmetric laminates Compos Sci Technol, 229 (2022), Article 109635 View PDF View articleView in ScopusGoogle Scholar [146] K.S. Suraj, P.M. Anilkumar, C.G. Krishnanunni, B.N. Rao Uncertainty quantification of bistable variable stiffness laminate using machine learning assisted perturbation approach Compos Struct, 319 (2023), Article 117072 View PDF View articleView in ScopusGoogle Scholar [147] M.Z. Akhter, A.R. Ali, H.K. Jawahar, F.K. Omar, E. Elnajjar Performance enhancement of small-scale wind turbine featuring morphing blades Energy, 278 (2023), Article 127772 View PDF View articleView in ScopusGoogle Scholar [148] R.A.L. Minetto, M. Paraschivoiu Simulation based analysis of morphing blades applied to a vertical axis wind turbine Energy, 202 (2020), Article 117705 Google Scholar [149] I.K. Kuder, A.F. Arrieta, M. Rist, P. Ermanni Aeroelastic response of a selectively compliant morphing aerofoil featuring integrated variable stiffness bi-stable laminates J Intell Mater Syst Struct, 27 (2016), pp. 1949-1966 View in ScopusGoogle Scholar [150] J.R. Rivas-Padilla, D.M. Boston, A.F. Arrieta Design of selectively compliant morphing structures with shape-induced bi-stable elements AIAA scitech 2019 forum (2019), p. 855 Google Scholar [151] A. Haldar, E. Jansen, B. Hofmeister, M. Bruns, R. Rolfes Analysis of novel morphing trailing edge flap actuated by multistable laminates AIAA J, 58 (2020), pp. 3149-3158, 10.2514/1.J058870 View in ScopusGoogle Scholar [152] J. Piquee, A.Á. García-Risco, I. López, C. Breitsamter, R. Wüchner, K.-U. Bletzinger Numerical investigations of a membrane morphing wind turbine blade under gust conditions J Wind Eng Ind Aerod, 224 (2022), Article 104921 View PDF View articleView in ScopusGoogle Scholar [153] D.W. MacPhee, A. Beyene Performance analysis of a small wind turbine equipped with flexible blades Renew Energy, 132 (2019), pp. 497-508 View PDF View articleView in ScopusGoogle Scholar [154] R.M.J. Groh, A. Pirrera Extreme mechanics in laminated shells: new insights Extreme Mech Lett, 23 (2018), pp. 17-23 View PDF View articleView in ScopusGoogle Scholar [155] B.S. Aragh, E.B. Farahani, B.X. Xu, H. Ghasemnejad, W.J. Mansur Manufacturable insight into modelling and design considerations in fibre-steered composite laminates: state of the art and perspective Comput Methods Appl Mech Eng, 379 (2021), Article 113752 Google Scholar [156] A.F. Arrieta, I.K. Kuder, T. Waeber, P. Ermanni Variable stiffness characteristics of embeddable multi-stable composites Compos Sci Technol, 97 (2014), pp. 12-18 View PDF View articleView in ScopusGoogle Scholar [157] A.F. Arrieta, I.K. Kuder, T. Waeber, P. Ermanni Embeddable variable stiffness multi-stable composites 24th international conference on adaptive structures and technologies (ICAST 2013) (2013) Google Scholar [158] M. Stoneham Materials and the environment: eco-informed material choice Mater Today, 12 (2009), p. 47, 10.1016/s1369-7021(09)70255-x View PDF View articleGoogle Scholar [159] N. Perry, A. Bernard, F. Laroche, S. Pompidou Improving design for recycling-Application to composites CIRP Ann-Manuf Technol, 61 (2012), 10.1016/j.cirp.2012.03.081ï Google Scholar [160] K. Ramirez-Tejeda, D.A. Turcotte, S. Pike Unsustainable wind turbine blade disposal practices in the United States: a case for policy intervention and technological innovation New Solut, 26 (2017), pp. 581-598, 10.1177/1048291116676098 View in ScopusGoogle Scholar [161] M. Saathoff, M. Rosemeier Stress-based assessment of the lifetime extension for wind turbines J phys conf ser, IOP Publishing Ltd (2020), 10.1088/1742-6596/1618/5/052057 Google Scholar [162] D. Wagg, I. Bond, M. Friswell, P. Weaver Adaptive structures: engineering applications John Wiley & Sons, Chichester, UK (2008) Google Scholar [163] M.T. Kikuta Mechanical properties of candidate materials for morphing wings (2003) Google Scholar [164] F. Gandhi, P. Anusonti-Inthra Skin design studies for variable camber morphing airfoils Smart Mater Struct, 17 (2008), 10.1088/0964-1726/17/01/015025 Google Scholar [165] J.J. Joo, G.W. Reich, J.T. Westfall Flexible skin development for morphing aircraft applications via topology optimization J Intell Mater Syst Struct, 20 (2009), pp. 1969-1985, 10.1177/1045389X09343026 View in ScopusGoogle Scholar [166] S. Murugan, E.I. Saavedra Flores, S. Adhikari, M.I. Friswell Optimal design of variable fiber spacing composites for morphing aircraft skins Compos Struct, 94 (2012), pp. 1626-1633, 10.1016/j.compstruct.2011.12.023 View PDF View articleView in ScopusGoogle Scholar [167] L.D. Peel, D.W. Jensen Response of fiber-reinforced elastomers under simple tension J Compos Mater, 35 (2001), pp. 96-137, 10.1106/V3YU-JR4G-MKJG-3VMF View in ScopusGoogle Scholar [168] D. Jensen, L.D. Peel, D.W. Jensen, K. Suzumori Batch fabrication of fiber-reinforced elastomer prepreg J Adv Mater, 30 (1998), pp. 3-10 CrossrefView in ScopusGoogle Scholar [169] M.W. Hyer, S.R. White Stress analysis of fiber-reinforced composite materials DEStech Publications, Inc, Lancaster, Pennsylvania (USA) (2009) Google Scholar [170] T. Yokozeki, S. ichi Takeda, T. Ogasawara, T. Ishikawa Mechanical properties of corrugated composites for candidate materials of flexible wing structures Compos Part A Appl Sci Manuf, 37 (2006), pp. 1578-1586, 10.1016/j.compositesa.2005.10.015 View PDF View articleView in ScopusGoogle Scholar [171] C. Thill, J. Etches, I. Bond, K. Potter, P. Weaver Morphing skins (2008) Google Scholar [172] C. Thill, J.D. Downsborough, S.J. Lai, I.P. Bond, D.P. Jones Aerodynamic study of corrugated skins for morphing wing applications Aeronaut J, 114 (2010), pp. 237-244 View in ScopusGoogle Scholar [173] S. Wang, F. Zhao, B. Zhou, S. Xue Modeling mechanical behavior of distributed piezoelectric actuators for morphing wing applications Multidiscip Model Mater Struct, 17 (2021), pp. 1093-1107 CrossrefView in ScopusGoogle Scholar [174] G.A.A. Thuwis, M.M. Abdalla, Z. Gürdal Optimization of a variable-stiffness skin for morphing high-lift devices Smart Mater Struct, 19 (2010), Article 124010 CrossrefView in ScopusGoogle Scholar [175] Y. Golfman Hybrid anisotropic materials for wind power turbine blades CRC Press (2012) Google Scholar [176] F. Previtali, A.F. Arrieta, P. Ermanni Double-walled corrugated structure for bending-stiff anisotropic morphing skins J Intell Mater Syst Struct, 26 (2015), pp. 599-613 View in ScopusGoogle Scholar [177] X. Shen, X. Liu, G. Lin, X. Bu, D. Wen Effects of anisotropic composite skin on electrothermal anti-icing system Proc Inst Mech Eng G J Aerosp Eng, 233 (2019), pp. 5403-5413 CrossrefView in ScopusGoogle Scholar [178] M.F. Ashby The properties of foams and lattices Phil Trans Math Phys Eng Sci, 364 (2006), pp. 15-30, 10.1098/rsta.2005.1678 View in ScopusGoogle Scholar [179] R.J. Wootton Support and deformability in insect wings J Zool, 193 (1981), pp. 447-468, 10.1111/j.1469-7998.1981.tb01497.x View in ScopusGoogle Scholar [180] C.W. Smith, R. Herbert, R.J. Wootton, K.E. Evans The hind wing of the desert locust (Schistocerca gregaria Forskål). II. Mechanical properties and functioning of the membrane J Exp Biol, 203 (2000), pp. 2933-2943, 10.1242/jeb.203.19.2933 View in ScopusGoogle Scholar [181] R.J. Wootton Functional morphology of insect wings Annu Rev Entomol, 37 (1992), pp. 113-153, 10.1146/annurev.en.37.010192.000553 View in ScopusGoogle Scholar [182] R.C. Herbert, P. Young, C.W. Smith, R.J. Wootton, K.E. Evans The hind wing of the desert locust (Schistocerca gregaria Forskål). III. A finite element analysis of a deployable structure J Exp Biol, 203 (2000), pp. 2945-2955, 10.1242/jeb.203.19.2945 View in ScopusGoogle Scholar [183] R.J. Wootton The mechanical design of insect wings Sci Am, 263 (1990), pp. 114-121 CrossrefGoogle Scholar [184] D.J.S. Newman The functional wing morphology of some Odonata University of Exeter (1982) PhD dissertation Google Scholar [185] F.R. Shanley Cardboard-box wing structures J Aeronaut Sci, 14 (1947), pp. 713-715, 10.2514/8.1500 Google Scholar [186] D. Perel, C. Libove Elastic buckling of infinitely long trapezoidally corrugated plates in shear J Appl Mech, 45 (1978), pp. 579-582 CrossrefView in ScopusGoogle Scholar [187] H.H. Sun, J. Spencer Buckling strength assessment of corrugated panels in offshore structures Mar Struct, 18 (2005), pp. 548-565, 10.1016/j.marstruc.2005.12.002 View PDF View articleView in ScopusGoogle Scholar [188] A.L.P.J. Wiggenraad, J.F.M. Michielsen, D. Santoro, F. Lepage, C. Kindervater, F. Beltran Development of a crashworthy composite fuselage structure for a commuter aircraft National Aerospace Laboratory NLR, NLR-TP-995 (2000) Google Scholar [189] P. Sareh The least symmetric crystallographic derivative of the developable double corrugation surface: computational design using underlying conic and cubic curves Mater Des, 183 (2019), Article 108128, 10.1016/j.matdes.2019.108128 View PDF View articleView in ScopusGoogle Scholar [190] P. Sareh, Y. Chen Intrinsic non-flat-foldability of two-tile DDC surfaces composed of glide-reflected irregular quadrilaterals Int J Mech Sci, 185 (2020), Article 105881, 10.1016/j.ijmecsci.2020.105881 View PDF View articleView in ScopusGoogle Scholar [191] P. Sareh, S.D. Guest A framework for the symmetric generalisation of the miura-ori Int J Space Struct, 30 (2015), pp. 141-152, 10.1260/0266-3511.30.2.141 View in ScopusGoogle Scholar [192] P. Sareh, P. Chermprayong, M. Emmanuelli, H. Nadeem, M. Kovac Rotorigami: a rotary origami protective system for robotic rotorcraft Sci Robot, 3 (2018), 10.1126/scirobotics.aah5228 Google Scholar [193] Y. Chen, W. Ye, P. Shi, R. He, J. Liang, J. Feng, P. Sareh Computational parametric analysis of cellular solids with the miura‐ori metamaterial geometry under quasistatic compressive loads Adv Eng Mater, 25 (2023), Article 2201762 View in ScopusGoogle Scholar [194] Y. Chen, J. Shi, R. He, C. Lu, P. Shi, J. Feng, P. Sareh A unified inverse design and optimization workflow for the Miura-oRing metastructure J Mech Des, 145 (2023) Google Scholar [195] P. Sareh, S.D. Guest Design of isomorphic symmetric descendants of the Miura-ori Smart Mater Struct, 24 (2015), Article 085001 CrossrefView in ScopusGoogle Scholar [196] P. Sareh, S.D. Guest Design of non-isomorphic symmetric descendants of the Miura-ori Smart Mater Struct, 24 (2015), Article 085002 CrossrefView in ScopusGoogle Scholar [197] T.-W. Liu, J.-B. Bai, S.-L. Li, N. Fantuzzi Large deformation and failure analysis of the corrugated flexible composite skin for morphing wing Eng Struct, 278 (2023), Article 115463 View PDF View articleView in ScopusGoogle Scholar [198] J.-B. Bai, D. Chen, J.-J. Xiong, C.-H. Dong A semi-analytical model for predicting nonlinear tensile behaviour of corrugated flexible composite skin Compos B Eng, 168 (2019), pp. 312-319 View PDF View articleView in ScopusGoogle Scholar [199] C. Lu, Y. Chen, J. Yan, J. Feng, P. Sareh Algorithmic spatial form-finding of four-fold origami structures based on mountain-valley assignments J Mech Robot, 16 (2024), Article 031001 View in ScopusGoogle Scholar [200] Y. Chen, J. Shi, C. Lu, J. Feng, P. Sareh Hierarchical clustering-based collapse mode identification and design optimization of energy-dissipation braces inspired by the triangular resch pattern J Struct Eng, 150 (2024), Article 04024037 View in ScopusGoogle Scholar [201] P. Shi, Y. Chen, J. Wei, T. Xie, J. Feng, P. Sareh Design and low-velocity impact behavior of an origami-bellow foldcore honeycomb acoustic metastructure Thin-Walled Struct, 197 (2024), Article 111607 View PDF View articleView in ScopusGoogle Scholar [202] Y. Chen, C. Lu, W. Fan, J. Feng, P. Sareh Data-driven design and morphological analysis of conical six-fold origami structures Thin-Walled Struct, 185 (2023), Article 110626 View PDF View articleView in ScopusGoogle Scholar [203] Y. Chen, J. Yan, J. Feng, P. Sareh Particle swarm optimization-based metaheuristic design generation of non-trivial flat-foldable origami tessellations with degree-4 vertices J Mech Des, 143 (2021), Article 011703 View in ScopusGoogle Scholar [204] Y. Chen, C. Lu, J. Yan, J. Feng, P. Sareh Intelligent computational design of scalene-faceted flat-foldable tessellations J Comput Des Eng, 9 (2022), pp. 1765-1774 CrossrefView in ScopusGoogle Scholar [205] P. Sareh Symmetric descendants of the Miura-ori University of Cambridge, UK (2014) PhD Dissertation Google Scholar [206] P. Sareh, S.D. Guest Minimal isomorphic symmetric variations on the Miura fold pattern The first international conference on transformable architecture (transformable 2013) (2013), pp. 313-318 Seville, Spain Google Scholar [207] P. Sareh, S.D. Guest Tessellating variations on the Miura fold pattern IASS-APCS symposium (2012), pp. 1070-1078 Seoul, South Korea Google Scholar [208] P. Sareh, S.D. Guest Designing symmetric derivatives of the Miura-ori Advances in architectural geometry 2014, Springer (2014), pp. 233-241 Google Scholar [209] C. Thill, J.A. Etches, I.P. Bond, K.D. Potter, P.M. Weaver Composite corrugated structures for morphing wing skin applications Smart Mater Struct, 19 (2010), 10.1088/0964-1726/19/12/124009 Google Scholar [210] C. Thill, J.A. Etches, I.P. Bond, K.D. Potter, P.M. Weaver, M.R. Wisnom Investigation of trapezoidal corrugated aramid/epoxy laminates under large tensile displacements transverse to the corrugation direction Compos Part A Appl Sci Manuf, 41 (2010), pp. 168-176, 10.1016/j.compositesa.2009.10.004 View PDF View articleView in ScopusGoogle Scholar [211] J. Etches, I.P. Bond, P.M. Weaver, K. Potter, C. Thill, J.A. Etches, I.P. Bond, K.D. Potter Experimental and parametric analysis of corrugated composite structures for morphing skin applications Spanwise Fish Bone Active Camber Morphing Wing View project Multistable Composite Actuator View project SEE PROFILE Experimental and parametric analysis of corrugated composite structures for morphing skin applications https://www.researchgate.net/publication/245022534 (2008) Google Scholar [212] R. Ge, B. Wang, C. Mou, Y. Zhou Deformation characteristics of corrugated composites for morphing wings Front Mech Eng China, 5 (2010), pp. 73-78, 10.1007/s11465-009-0063-4 View in ScopusGoogle Scholar [213] R. Wu, J. Sun, Z. Chang, R. Bai, J. Leng Elastic composite skin for a pure shear morphing wing structures J Intell Mater Syst Struct, 26 (2015), pp. 352-363, 10.1177/1045389X14526796 View in ScopusGoogle Scholar [214] I. Dayyani, A.D. Shaw, E.I. Saavedra Flores, M.I. Friswell The mechanics of composite corrugated structures: a review with applications in morphing aircraft Compos Struct, 133 (2015), pp. 358-380, 10.1016/j.compstruct.2015.07.099 View PDF View articleView in ScopusGoogle Scholar [215] P. Potluri, H. Arshad Development of Novel Skin Materials for Morphing Aircraft Low velocity impact damage tolerance of multiscale toughened composite laminates View project Electromechanical behaviour of three-dimensional (3D) woven composites View project https://www.researchgate.net/publication/235109333 (2017) Google Scholar [216] K. Ye, J.C. Ji A novel morphing propeller system inspired by origami-based structure J Mech Robot, 15 (2023), Article 011006 View in ScopusGoogle Scholar [217] W. Wang, S. Caro, F. Bennis, O.R. Salinas Mejia A simplified morphing blade for horizontal axis wind turbines J Sol Energy Eng, 136 (2014), Article 011018 Google Scholar [218] Y. Forterre, J. Skotheim, L. Mahadevan, J. Dumais How the Venus flytrap snaps: a poroelastic buckling Poromechanics III: biot centennial (1905-2005) - proceedings of the 3rd biot conference on poromechanics (2005), pp. 25-30, 10.1038/nature03072 View in ScopusGoogle Scholar [219] M. Cho, H.Y. Roh Non-linear analysis of the curved shapes of unsymmetric laminates accounting for slippage effects Compos Sci Technol, 63 (2003), pp. 2265-2275, 10.1016/S0266-3538(03)00177-5 View PDF View articleView in ScopusGoogle Scholar [220] M.W. Hyer Calculations of the room-temperature shapes of unsymmetric laminates J Compos Mater, 15 (1981), pp. 296-310 CrossrefView in ScopusGoogle Scholar [221] M.W. Hyer Some observations on the cured shape of thin unsymmetric laminates J Compos Mater, 15 (1981), pp. 175-194 CrossrefView in ScopusGoogle Scholar [222] A. Hamamoto, M.W. Hyer Non-linear temperature-curvature relationships for unsymmetric graphite-epoxy laminates Int J Solids Struct, 23 (1987), pp. 919-935 Google Scholar [223] K.S. Kim, H.T. Hahn Residual stress development during processing of graphite/epoxy composites Compos Sci Technol, 36 (1989), pp. 121-132 View PDF View articleView in ScopusGoogle Scholar [224] W.J. Jun, C.S. Hong Effect of residual shear strain on the cured shape of unsymmetric cross-ply thin laminates Compos Sci Technol, 38 (1990), pp. 55-67 View PDF View articleView in ScopusGoogle Scholar [225] M. Cho, M.-H. Kim, H.S. Choi, C.H. Chung, K.-J. Ahn, Y.S. Eom A study on the room-temperature curvature shapes of unsymmetric laminates including slippage effects J Compos Mater, 32 (1998), pp. 460-482 CrossrefView in ScopusGoogle Scholar [226] M. Schlecht, K. Schulte Advanced calculation of the room-temperature shapes of unsymmetric laminates J Compos Mater, 33 (1999), pp. 1472-1490 CrossrefView in ScopusGoogle Scholar [227] M.L. Dano, M.W. Hyer Thermally-induced deformation behavior of unsymmetric laminates Int J Solids Struct, 35 (1998), pp. 2101-2120, 10.1016/S0020-7683(97)00167-4 View PDF View articleView in ScopusGoogle Scholar [228] M.W. Hyer, A.B. Jilani Deformation characteristics of circular RAINBOW actuators Smart Mater Struct, 11 (2002), p. 175 View in ScopusGoogle Scholar [229] W. Hufenbach, M. Gude Analysis and optimisation of multistable composites under residual stresses Compos Struct, 55 (2002), pp. 319-327 View PDF View articleView in ScopusGoogle Scholar [230] W. Hufenbach, M. Gude, L. Kroll Design of multistable composites for application in adaptive structures Compos Sci Technol, 62 (2002), pp. 2201-2207 View PDF View articleView in ScopusGoogle Scholar [231] M.-L. Dano, M.W. Hyer Snap-through of unsymmetric fiber-reinforced composite laminates Int J Solids Struct, 39 (2002), pp. 175-198 View PDF View articleView in ScopusGoogle Scholar [232] M.L. Dano, M.W. Hyer SMA-induced snap-through of unsymmetric fiber-reinforced composite laminates Int J Solids Struct, 40 (2003), pp. 5949-5972, 10.1016/S0020-7683(03)00374-3 View PDF View articleView in ScopusGoogle Scholar [233] M.R. Schultz, M.W. Hyer Snap-through of unsymmetric cross-ply laminates using piezoceramic actuators J Intell Mater Syst Struct, 14 (2003), pp. 795-814, 10.1177/104538903039261 View in ScopusGoogle Scholar [234] M.R. Schultz, M.W. Hyer, R. Brett Williams, W. Keats Wilkie, D.J. Inman Snap-through of unsymmetric laminates using piezocomposite actuators Compos Sci Technol, 66 (2006), pp. 2442-2448, 10.1016/j.compscitech.2006.01.027 View PDF View articleView in ScopusGoogle Scholar [235] Z. Zhang, H. Wu, X. He, H. Wu, Y. Bao, G. Chai The bistable behaviors of carbon-fiber/epoxy anti-symmetric composite shells Compos B Eng, 47 (2013), pp. 190-199, 10.1016/j.compositesb.2012.10.040 View PDF View articleView in ScopusGoogle Scholar [236] Z. Zhang, H. Wu, G. Ye, H. Wu, X. He, G. Chai Systematic experimental and numerical study of bistable snap processes for anti-symmetric cylindrical shells Compos Struct, 112 (2014), pp. 368-377, 10.1016/j.compstruct.2014.02.030 View PDF View articleView in ScopusGoogle Scholar [237] M.R. Schultz A concept for airfoil-like active bistable twisting Structures J Intell Mater Syst Struct, 19 (2008), pp. 157-169, 10.1177/1045389X06073988 View in ScopusGoogle Scholar [238] F. Dai, H. Li, S. Du A multi-stable lattice structure and its snap-through behavior among multiple states Compos Struct, 97 (2013), pp. 56-63, 10.1016/j.compstruct.2012.10.016 View PDF View articleView in ScopusGoogle Scholar [239] F. Dai, H. Li, S. Du A multi-stable wavy skin based on bi-stable laminates Compos Part A Appl Sci Manuf, 45 (2013), pp. 102-108, 10.1016/j.compositesa.2012.09.015 View PDF View articleView in ScopusGoogle Scholar [240] F. Dai, H. Li, S. Du Design and analysis of a tri-stable structure based on bi-stable laminates Compos Part A Appl Sci Manuf, 43 (2012), pp. 1497-1504, 10.1016/j.compositesa.2012.03.018 View PDF View articleView in ScopusGoogle Scholar [241] D.N. Betts, H.A. Kim, C.R. Bowen, D.J. Inman Optimal configurations of bistable piezo-composites for energy harvesting Appl Phys Lett, 100 (2012), 10.1063/1.3693523 Google Scholar [242] A. Pirrera, D. Avitabile, P.M. Weaver On the thermally induced bistability of composite cylindrical shells for morphing structures Int J Solids Struct, 49 (2012), pp. 685-700, 10.1016/j.ijsolstr.2011.11.011 View PDF View articleView in ScopusGoogle Scholar [243] S.A. Tawfik, D. Stefan Dancila, E. Armanios Planform effects upon the bistable response of cross-ply composite shells Compos Part A Appl Sci Manuf, 42 (2011), pp. 825-833, 10.1016/j.compositesa.2011.03.012 View PDF View articleView in ScopusGoogle Scholar [244] P.F. Giddings, H.A. Kim, A.I.T. Salo, C.R. Bowen Modelling of piezoelectrically actuated bistable composites Mater Lett, 65 (2011), pp. 1261-1263, 10.1016/j.matlet.2011.01.015 View PDF View articleView in ScopusGoogle Scholar [245] D.N. Betts, H.A. Kim, C.R. Bowen Modeling and optimization of bistable composite laminates for piezoelectric actuation J Intell Mater Syst Struct, 22 (2011), pp. 2181-2191, 10.1177/1045389X11427478 View in ScopusGoogle Scholar [246] A. Pirrera, D. Avitabile, P.M. Weaver Bistable plates for morphing structures: a refined analytical approach with high-order polynomials Int J Solids Struct, 47 (2010), pp. 3412-3425, 10.1016/j.ijsolstr.2010.08.019 View PDF View articleView in ScopusGoogle Scholar [247] S. Daynes, K.D. Potter, P.M. Weaver Bistable prestressed buckled laminates Compos Sci Technol, 68 (2008), pp. 3431-3437, 10.1016/j.compscitech.2008.09.036 View PDF View articleView in ScopusGoogle Scholar [248] P.F. Giddings, C.R. Bowen, A.I.T. Salo, H.A. Kim, A. Ive Bistable composite laminates: effects of laminate composition on cured shape and response to thermal load Compos Struct, 92 (2010), pp. 2220-2225, 10.1016/j.compstruct.2009.08.043 View PDF View articleView in ScopusGoogle Scholar [249] D.N. Betts, A.I.T. Salo, C.R. Bowen, H.A. Kim Characterisation and modelling of the cured shapes of arbitrary layup bistable composite laminates Compos Struct, 92 (2010), pp. 1694-1700, 10.1016/j.compstruct.2009.12.005 View PDF View articleView in ScopusGoogle Scholar [250] A.F. Arrieta, S.A. Neild, D.J. Wagg Nonlinear dynamic response and modeling of a bi-stable composite plate for applications to adaptive structures Nonlinear Dyn, 58 (2009), pp. 259-272, 10.1007/s11071-009-9476-1 View in ScopusGoogle Scholar [251] C.G. Diaconu, P.M. Weaver, A.F. Arrieta Dynamic analysis of bi-stable composite plates J Sound Vib, 322 (2009), pp. 987-1004, 10.1016/j.jsv.2008.11.032 View PDF View articleView in ScopusGoogle Scholar [252] P. Giddings, C.R. Bowen, R. Butler, H.A. Kim Characterisation of actuation properties of piezoelectric bi-stable carbon-fibre laminates Compos Part A Appl Sci Manuf, 39 (2008), pp. 697-703, 10.1016/j.compositesa.2007.07.007 View PDF View articleView in ScopusGoogle Scholar [253] S. Tawfik, Xinyan Tan, S. Ozbay, E. Armanios Anticlastic stability modeling for cross-ply composites J Compos Mater, 41 (2007), pp. 1325-1338, 10.1177/0021998306068073 View in ScopusGoogle Scholar [254] P. Miguel, S. Carvalho Portela, P.M.P.R.C. Camanho, I.P. Bond Universidade do Porto Faculdade de Engenharia Analysis of morphing, multi-stable structures actuated by piezoelectric patches (2005) Google Scholar [255] K. Potter, P. Weaver, A.A. Seman, S. Shah Phenomena in the bifurcation of unsymmetric composite plates Compos Part A Appl Sci Manuf, 38 (2007), pp. 100-106, 10.1016/j.compositesa.2006.01.017 View PDF View articleView in ScopusGoogle Scholar [256] C.R. Bowen, A.I.T. Salo, R. Butler, E. Chang, H.A. Kim Bi-stable composites with piezoelectric actuators for shape change Key Eng Mater, 334–335 (2007), pp. 1109-1112 https://dx.doi.org/10.4028/www.scientific.net/kem.334-335.1109 View in ScopusGoogle Scholar [257] C.R. Bowen, R. Butler, R. Jervis, H.A. Kim, A.I.T. Salo Morphing and shape control using unsymmetrical composites J Intell Mater Syst Struct, 18 (2007), pp. 89-98, 10.1177/1045389X07064459 View in ScopusGoogle Scholar [258] L. Ren, A. Parvizi-Majidi A model for shape control of cross-ply laminated shells using a piezoelectric actuator J Compos Mater, 40 (2006), pp. 1271-1285, 10.1177/0021998305057437 View in ScopusGoogle Scholar [259] W. Hufenbach, M. Gude, A. Czulak Actor-initiated snap-through of unsymmetric composites with multiple deformation states J Mater Process Technol, 175 (2006), pp. 225-230, 10.1016/j.jmatprotec.2005.04.025 View PDF View articleView in ScopusGoogle Scholar [260] M. Gude, W. Hufenbach Design of novel morphing structures based on bistable composites with piezoceramic actuators (2006) Google Scholar [261] Z. Chen, Q. Guo, C. Majidi, W. Chen, D.J. Srolovitz, M.P. Haataja Nonlinear geometric effects in mechanical bistable morphing structures https://doi.org/10.1103/PhysRevLett.109.114302 (2012) Google Scholar [262] S. Daynes, C.G. Diaconu, K.D. Potter, P.M. Weaver Bistable prestressed symmetric laminates J Compos Mater, 44 (2010), pp. 1119-1137, 10.1177/0021998309351603 View in ScopusGoogle Scholar [263] M.E. Tuttle, R.T. Koehler, D. Keren Controlling thermal stresses in composites by means of fiber prestress J Compos Mater, 30 (1996), pp. 486-502 CrossrefView in ScopusGoogle Scholar [264] N. Mehreganian, S. Razi, A.S. Fallah, P. Sareh Mechanical performance of negative-stiffness multistable bi-material composites Acta Mech, 236 (2025), pp. 995-1017 https://doi.org/10.1007/s00707-024-04158-9 View in ScopusGoogle Scholar [265] R. He, Y. Chen, J. Liang, Y. Sun, J. Feng, P. Sareh Crystallographically programmed kirigami metamaterials Journal of the Mechanics and Physics of Solids, 193 (2024), p. 105903 View PDF View articleView in ScopusGoogle Scholar [266] Y. Chen, Z. Shao, J. Feng, P. Sareh Programmable Truncated Cuboctahedral Origami Metastructures Actuated by Shape Memory Polymer Hinges Adv. Theory Simul., 7 (2024), p. 2400594 https://doi.org/10.1002/adts.202400594 View in ScopusGoogle Scholar [267] H. Zhou, J. Gao, Y. Chen, Z. Shen, H. Lv, P. Sareh A quasi-zero-stiffness vibration isolator inspired by Kresling origami Structures, 69 (2024), p. 107315 View PDF View articleView in ScopusGoogle Scholar [268] L. Fan, L. Bo, R. Xu, Y. Chen, P. Sareh Tunable multi-stability of conical Kresling origami structures utilizing local imperfections Advances in Engineering Software, 196 (2024), p. 103725 View PDF View articleView in ScopusGoogle Scholar [269] Y. Chen, P. Shi, Y. Bai, J. Li, J. Feng, P. Sareh Effects of perforated creases on the mechanical behavior and fatigue life of thick origami structures Mechanics Based Design of Structures and Machines, 52 (9) (2024), pp. 6525-6538 CrossrefView in ScopusGoogle Scholar [270] Y. Chen, Z. Shao, J. Wei, J. Feng, P. Sareh Geometric design and performance analysis of a foldcore sandwich acoustic metastructure for tunable low-frequency sound absorption Finite Elements in Analysis and Design, 235 (2024), p. 104150 View PDF View articleView in ScopusGoogle Scholar [271] Y. Chen, R. He, S. Hu, Z. Zeng, T. Guo, J. Feng, P. Sareh Design–material transition threshold of ribbon kirigami Materials & Design, 242 (2024), p. 112979 View PDF View articleView in ScopusGoogle Scholar [272] C. Lu, Y. Chen, W. Fan, J. Feng, P. Sareh A symmetric substructuring method for analyzing the natural frequencies of conical origami structures Theoretical and Applied Mechanics Letters, 14 (3) (2024), p. 100517 View PDF View articleView in ScopusGoogle Scholar [273] Y. Chen, P. Shi, Y. Bai, J. Li, J. Feng, P. Sareh Engineered origami crease perforations for optimal mechanical performance and fatigue life Thin-Walled Structures, 185 (2023), p. 110572 View PDF View articleView in ScopusGoogle Scholar [274] R.H. Buckholz The Functional Role of Wing Corrugations in Living Systems Fluids Eng. Mar, 108 (1) (1986), pp. 93-97 CrossrefView in ScopusGoogle Scholar [275] D.J.S. Newman An approach to the mechanics of pleating in dragonfly wings Journal of Experimental Biology, 125 (1) (1986), pp. 361-372 CrossrefView in ScopusGoogle Scholar [276] J. Kukalova‐Peck Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record Journal of Morphology, 156 (1) (1978), pp. 53-125 CrossrefView in ScopusGoogle Scholar [277] S. Sunada, L. Zeng, K. Kawachi The relationship between dragonfly wing structure and torsional deformation Journal of theoretical Biology, 193 (1) (1998), pp. 39-45 View PDF View articleView in ScopusGoogle Scholar [278] S. Sudo, K. Tsuyuki, T. Ikohagi, F. Ohta, S. Shida, J. Tani A study on the wing structure and flapping behavior of a dragonfly JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 42 (3) (1999), pp. 721-729 CrossrefView in ScopusGoogle Scholar [279] S. Sudo, K. Tsuyuki, J. Tani Wing morphology of some insects JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 43 (4) (2000), pp. 895-900 CrossrefView in ScopusGoogle Scholar [280] S.R. Jongerius, D.J.E.M. Lentink Structural analysis of a dragonfly wing Experimental Mechanics, 50 (2010), pp. 1323-1334 CrossrefGoogle Scholar [281] X.G. Meng, L. Xu, M. Sun Aerodynamic effects of corrugation in flapping insect wings in hovering flight Journal of Experimental Biology, 214 (3) (2011), pp. 432-444 CrossrefView in ScopusGoogle Scholar [282] Y. Lian, T. Broering, K. Hord, R. Prater The characterization of tandem and corrugated wings Progress in Aerospace Sciences, 65 (2014), pp. 41-69 View PDF View articleView in ScopusGoogle Scholar [283] P. Sareh Inspired by nature, refined by numbers: Formal-functional bioinspiration and intelligent computation in vehicle design Royal Society Open Science (2025) Google Scholar [284] H. Hu, M. Tamai Bioinspired corrugated airfoil at low Reynolds numbers Journal of Aircraft, 45 (6) (2008), pp. 2068-2077 CrossrefGoogle Scholar [285] O. Deparis, S. Mouchet, L. Dellieu, J.F. Colomer, M. Sarrazin Nanostructured surfaces: bioinspiration for transparency, coloration and wettability Materials Today: Proceedings, 1 (2014), pp. 122-129 View PDF View articleView in ScopusGoogle Scholar [286] C. Koehler, Z. Liang, Z. Gaston, H. Wan, H. Dong 3D reconstruction and analysis of wing deformation in free-flying dragonflies Journal of Experimental Biology, 215 (17) (2012), pp. 3018-3027 View in ScopusGoogle Scholar [287] Y. Narita, K. Chiba Aerodynamics on a faithful hindwing model of a migratory dragonfly based on 3D scan data Journal of Fluids and Structures, 125 (2024), p. 104080 View PDF View articleView in ScopusGoogle Scholar |
---|