Design optimisation of additively manufactured titanium lattice structures for biomedical implants

Journal article

El-Sayed, M.A., Essa, K., Ghazy, M. and Hassanin, H. 2020. Design optimisation of additively manufactured titanium lattice structures for biomedical implants. The International Journal of Advanced Manufacturing Technology.
AuthorsEl-Sayed, M.A., Essa, K., Ghazy, M. and Hassanin, H.

A key advantage of additive manufacturing (AM) is that it allows the fabrication of lattice structures for customised biomedical implants with high performance. This paper presents the use of statistical approaches in design optimisation of additively manufactured titanium lattice structures for biomedical implants. Design of experiments using response surface and analysis of variance were carried out to study the effect design parameters on the properties of the AM lattice structures such as ultimate compression strength, specific compressive strength, elastic modulus, and porosity. In addition, the lattice dimensions were optimized to fabricate a diamond cellular structure with properties that match human bones. The study found that the length of a diamond-shaped unit cell strut is the most significant design parameter. In particular, the porosity of the unit cell increases as the strut length increases, while it had a significant reverse effect on the specific compressive strength, elastic modulus and ultimate compression strength. On the other hands, increasing the orientation angle was found to reduce both the specific compressive strength and modulus of elasticity of the lattice structure. An optimised lattice structure with strut diameter of 0.84 mm, length of 3.29 mm and orientation angle of 47° was shown to have specific compressive strength, elastic modulus, ultimate compression strength and porosity of 37.8 kN.m/kg, 1 GPa, 49.5 MPa and 85.7%, respectively. A cellular structure with the obtained properties could be effectively applied for trabecular bones replacement surgeries.

KeywordsAdditive Manufacturing; Implants; Porosity; Powder Bed Fusion; Lattices
JournalThe International Journal of Advanced Manufacturing Technology
Digital Object Identifier (DOI)
Official URL
Publication dates
Online27 Aug 2020
Publication process dates
Accepted20 Aug 2020
Deposited26 Aug 2020
Accepted author manuscript
File Access Level
Output statusPublished

1. Kang, D.; Park, S.; Son, Y.; Yeon, S.; Kim, S.H.; Kim, I. Multi-lattice inner structures for high-strength and light-weight in metal selective laser melting process. Materials & Design 2019, 175, 107786.
2. Iwase, A.; Hori, F. Modification of Lattice Structures and Mechanical Properties of Metallic Materials by Energetic Ion Irradiation and Subsequent Thermal Treatments. Quantum Beam Science 2020, 4, 17.
3. Cosma, C.; Kessler, J.; Gebhardt, A.; Campbell, I.; Balc, N. Improving the Mechanical Strength of Dental Applications and Lattice Structures SLM Processed. Materials 2020, 13, 905.
4. Sienkiewicz, J.; Płatek, P.; Jiang, F.; Sun, X.; Rusinek, A. Investigations on the Mechanical Response of Gradient Lattice Structures Manufactured via SLM. Metals 2020, 10, 213.
5. Maconachie, T.; Leary, M.; Lozanovski, B.; Zhang, X.; Qian, M.; Faruque, O.; Brandt, M. SLM lattice structures: Properties, performance, applications and challenges. Materials & Design 2019, 108137.
6. Maskery, I.; Aremu, A.; Parry, L.; Wildman, R.; Tuck, C.; Ashcroft, I. Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading. Materials & Design 2018, 155, 220-232.
7. Narkhede, S.; Sur, A.; Darvekar, S. Applications, manufacturing and thermal characteristics of micro-lattice structures: Current state of the art. Engineering Journal 2019, 23, 419-431, doi:10.4186/ej.2019.23.6.419.
8. Rashed, M.; Ashraf, M.; Mines, R.; Hazell, P.J. Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications. Materials & Design 2016, 95, 518-533.
9. Maldovan, M.; Ullal, C.K.; Jang, J.-H.; Thomas, E.L. Sub-Micrometer Scale Periodic Porous Cellular Structures: Microframes Prepared by Holographic Interference Lithography. Advanced Materials 2007, 19, 3809-3813, doi:10.1002/adma.200700811.
10. Zhu, Z.; Hassanin, H.; Jiang, K. A soft moulding process for manufacture of net-shape ceramic microcomponents. The International Journal of Advanced Manufacturing Technology 2010, 47, 147-152, doi:10.1007/s00170-008-1864-z.
11. Hassanin, H.; Jiang, K. Multiple replication of thick PDMS micropatterns using surfactants as release agents. Microelectronic Engineering 2011, 88, 3275-3277, doi:
12. Hassanin, H.; Jiang, K. Fabrication of Al2O3/SiC Composite Microcomponents using Non-aqueous Suspension. Advanced Engineering Materials 2009, 11, 101-105, doi:10.1002/adem.200800158.
13. Hassanin, H.; Jiang, K. Net shape manufacturing of ceramic micro parts with tailored graded layers. Journal of Micromechanics and Microengineering 2013, 24, 015018, doi:10.1088/0960-1317/24/1/015018.
14. Hassanin, H.; Jiang, K. Fabrication and characterization of stabilised zirconia micro parts via slip casting and soft moulding. Scripta Materialia 2013, 69, 433-436, doi:
15. Hassanin, H.; Jiang, K. Functionally graded microceramic components. Microelectronic Engineering 2010, 87, 1610-1613, doi:
16. Hassanin, H.; Jiang, K. Alumina composite suspension preparation for softlithography microfabrication. Microelectronic Engineering 2009, 86, 929-932, doi:
17. Hassanin, H.; Jiang, K. Optimized process for the fabrication of zirconia micro parts. Microelectronic Engineering 2010, 87, 1617-1619, doi:
18. Essa, K.; Modica, F.; Imbaby, M.; El-Sayed, M.A.; ElShaer, A.; Jiang, K.; Hassanin, H. Manufacturing of metallic micro-components using hybrid soft lithography and micro-electrical discharge machining. The International Journal of Advanced Manufacturing Technology 2017, 91, 445-452.
19. Hassanin, H.; Essa, K.; Qiu, C.; Abdelhafeez Ali, M.; Adkins Nicholas, J.E.; Attallah Moataz, M. Net-shape manufacturing using hybrid selective laser melting/hot isostatic pressing. Rapid Prototyping Journal 2017, 23, 720-726, doi:10.1108/RPJ-02-2016-0019.
20. Qiu, C.; Adkins, N.J.E.; Hassanin, H.; Attallah, M.M.; Essa, K. In-situ shelling via selective laser melting: Modelling and microstructural characterisation. Materials & Design 2015, 87, 845-853, doi:
21. Hassanin, H.; Finet, L.; Cox, S.C.; Jamshidi, P.; Grover, L.M.; Shepherd, D.E.T.; Addison, O.; Attallah, M.M. Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channels. Additive Manufacturing 2018, 20, 144-155, doi:
22. Klippstein, H.; Hassanin, H.; Diaz De Cerio Sanchez, A.; Zweiri, Y.; Seneviratne, L. Additive Manufacturing of Porous Structures for Unmanned Aerial Vehicles Applications. Advanced Engineering Materials 2018, 20, 1800290, doi:10.1002/adem.201800290.
23. Sabouri, A.; Yetisen, A.K.; Sadigzade, R.; Hassanin, H.; Essa, K.; Butt, H. Three-Dimensional Microstructured Lattices for Oil Sensing. Energy & Fuels 2017, 31, 2524-2529, doi:10.1021/acs.energyfuels.6b02850.
24. Klippstein, H.; Diaz De Cerio Sanchez, A.; Hassanin, H.; Zweiri, Y.; Seneviratne, L. Fused Deposition Modeling for Unmanned Aerial Vehicles (UAVs): A Review. Advanced Engineering Materials 2018, 20, 1700552, doi:10.1002/adem.201700552.
25. Galatas, A.; Hassanin, H.; Zweiri, Y.; Seneviratne, L. Additive Manufactured Sandwich Composite/ABS Parts for Unmanned Aerial Vehicle Applications. Polymers (Basel) 2018, 10, 1262.
26. Tan, C.; Li, S.; Essa, K.; Jamshidi, P.; Zhou, K.; Ma, W.; Attallah, M.M. Laser Powder Bed Fusion of Ti-rich TiNi lattice structures: Process optimisation, geometrical integrity, and phase transformations. International Journal of Machine Tools and Manufacture 2019, 141, 19-29, doi:
27. Hassanin, H.; Abena, A.; Elsayed, M.A.; Essa, K. 4D Printing of NiTi Auxetic Structure with Improved Ballistic Performance. Micromachines 2020, 11, 745.
28. Penchev, P.; Bhaduri, D.; Carter, L.; Mehmeti, A.; Essa, K.; Dimov, S.; Adkins, N.J.E.; Maillol, N.; Bajolet, J.; Maurath, J., et al. System-level integration tools for laser-based powder bed fusion enabled process chains. Journal of Manufacturing Systems 2019, 50, 87-102, doi:
29. Li, Y.; Feng, Z.; Hao, L.; Huang, L.; Xin, C.; Wang, Y.; Bilotti, E.; Essa, K.; Zhang, H.; Li, Z., et al. A Review on Functionally Graded Materials and Structures via Additive Manufacturing: From Multi-Scale Design to Versatile Functional Properties. Advanced Materials Technologies 2020, 5, 1900981, doi:10.1002/admt.201900981.
30. Li, Y.; Feng, Z.; Huang, L.; Essa, K.; Bilotti, E.; Zhang, H.; Peijs, T.; Hao, L. Additive manufacturing high performance graphene-based composites: A review. Composites Part A: Applied Science and Manufacturing 2019, 124, 105483, doi:
31. Rehme, O.; Emmelmann, C. Rapid manufacturing of lattice structures with selective laser melting; SPIE: 2006; Vol. 6107.
32. Challis, V.J.; Xu, X.; Zhang, L.C.; Roberts, A.P.; Grotowski, J.F.; Sercombe, T.B. High specific strength and stiffness structures produced using selective laser melting. Materials & Design 2014, 63, 783-788.
33. Elsayed, M.; Ghazy, M.; Youssef, Y.; Essa, K. Optimization of SLM process parameters for Ti6Al4V medical implants. Rapid Prototyping Journal 2019, 25, 433-447.
34. Hassanin, H.; Al-Kinani, A.A.; ElShaer, A.; Polycarpou, E.; El-Sayed, M.A.; Essa, K. Stainless steel with tailored porosity using canister-free hot isostatic pressing for improved osseointegration implants. Journal of Materials Chemistry B 2017, 5, 9384-9394.
35. Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; Qian, M.; Brandt, M.; Xie, Y.M. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 2016, 83, 127-141.
36. Sing, S.L.; Yeong, W.Y.; Wiria, F.E.; Tay, B. Characterization of titanium lattice structures fabricated by selective laser melting using an adapted compressive test method. Experimental Mechanics 2016, 56, 735-748.
37. Brenne, F.; Niendorf, T.; Maier, H. Additively manufactured cellular structures: Impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load. Journal of Materials Processing Technology 2013, 213, 1558-1564.
38. Salem, H.; Carter, L.; Attallah, M.; Salem, H. Influence of processing parameters on internal porosity and types of defects formed in Ti6Al4V lattice structure fabricated by selective laser melting. Materials Science and Engineering: A 2019, 767, 138387.
39. Wauthle, R.; Vrancken, B.; Beynaerts, B.; Jorissen, K.; Schrooten, J.; Kruth, J.-P.; Van Humbeeck, J. Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Additive Manufacturing 2015, 5, 77-84.
40. Mazur, M.; Leary, M.; Sun, S.; Vcelka, M.; Shidid, D.; Brandt, M. Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM). The International Journal of Advanced Manufacturing Technology 2016, 84, 1391-1411.
41. Sing, S.L.; Wiria, F.E.; Yeong, W.Y. Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior. Robotics and Computer-Integrated Manufacturing 2018, 49, 170-180.
42. Hader, R.; Park, S.H. Slope-rotatable central composite designs. Technometrics 1978, 20, 413-417.
43. Tamburrino, F.; Graziosi, S.; Bordegoni, M. The design process of additively manufactured mesoscale lattice structures: A review. Journal of Computing and Information Science in Engineering 2018, 18, doi:10.1115/1.4040131.
44. Essa, K.; Hassanin, H.; Attallah, M.M.; Adkins, N.J.; Musker, A.J.; Roberts, G.T.; Tenev, N.; Smith, M. Development and testing of an additively manufactured monolithic catalyst bed for HTP thruster applications. Applied Catalysis A: General 2017, 542, 125-135, doi:
45. Hassanin, H.; Alkendi, Y.; Elsayed, M.; Essa, K.; Zweiri, Y. Controlling the properties of additively manufactured cellular structures using machine learning approaches. Advanced Engineering Materials 2020.
46. Essa, K.; Sabouri, A.; Butt, H.; Basuny, F.H.; Ghazy, M.; El-Sayed, M.A. Laser additive manufacturing of 3D meshes for optical applications. PloS one 2018, 13.
47. Liu, F.; Zhang, D.Z.; Zhang, P.; Zhao, M.; Jafar, S. Mechanical properties of optimized diamond lattice structure for bone scaffolds fabricated via selective laser melting. Materials 2018, 11, 374.
48. Weißmann, V.; Wieding, J.; Hansmann, H.; Laufer, N.; Wolf, A.; Bader, R. Specific yielding of selective laser-melted Ti6Al4V open-porous scaffolds as a function of unit cell design and dimensions. Metals 2016, 6, 166.
49. Choy, S.Y.; Sun, C.-N.; Leong, K.F.; Wei, J. Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: Design, orientation and density. Additive Manufacturing 2017, 16, 213-224.

Permalink -

Restricted files

Accepted author manuscript

  • 0
    total views
  • 2
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile
Hassanin, H., Mohammed, M., Abdel-Wahab, A. and Essa, K 2020. Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile. Materials.
Micro-fabrication of ceramics: additive manufacturing and conventional technologies
Hassanin, H. 2020. Micro-fabrication of ceramics: additive manufacturing and conventional technologies. Journal of Advanced Ceramics.
3D printing of solid oral dosage forms: numerous challenges with unique opportunities
Hassanin, H. 2020. 3D printing of solid oral dosage forms: numerous challenges with unique opportunities. Journal of Pharmaceutical Sciences.
4D Printing of NiTi auxetic structure with improved ballistic performance
Hassanin, H., Abena, A., Elsayed, M.A. and Essa, K. 2020. 4D Printing of NiTi auxetic structure with improved ballistic performance. Micromachines. 11 (8), p. 745.