Micro-additive manufacturing technologies of three-dimensional MEMS

Journal article


Hassanin, H., Sheikholeslami, G., Pooya, S. and Ishaq, R. 2021. Micro-additive manufacturing technologies of three-dimensional MEMS . Advanced Engineering Materials. https://doi.org/10.1002/adem.202100422
AuthorsHassanin, H., Sheikholeslami, G., Pooya, S. and Ishaq, R.
Abstract

Conventional microfabrication processes have been well established, but their capabilities are generally limited simple and 2D extruded geometries. Additive manufacturing allows the ability to manufacture true 3D complex geometries, rapid design for manufacturing, mass customisation, materials savings, and high precision which have triggered the increased interest in manufacturing microelectromechanical systems (MEMS). This paper consolidates MEMS manufacturing's recent advancements, including both conventional and additive manufacturing technologies, their working principles, and practical capabilities. The paper also discusses in detail the use of additive manufacturing in several MEMS areas such as in microelectronics, circuitry, microfluidics, lab on a chip, packaging, and structural MEMS. Furthermore, the potentials and limitations of additive manufacturing are investigated with regards to the MEMS requirements. Finally, the technology outlook and improvements are discussed. This study showed that additive manufacturing has offered a promising future for the fabrication of microelectromechanical systems, especially using high resolution techniques such as microstereolithography, materials jetting, and materials extrusion. On the other hand, current challenges such as materials requirements, equipment innovation, fabricating of in vivo devices for biomedical applications, inherited defects and poor surface finish, adhesion to substrates, and productivity are areas that requires further study to increase the uptake by the MEMS community.

KeywordsAdditive manufacturing; MEMs; 3D printing; Microfabrication; Rapid prototyping
Year2021
JournalAdvanced Engineering Materials
PublisherWiley
ISSN1438-1656
1527-2648
Digital Object Identifier (DOI)https://doi.org/10.1002/adem.202100422
Official URLhttps://doi.org/10.1002/adem.202100422
Publication dates
Online06 Sep 2021
Publication process dates
Accepted16 Aug 2021
Deposited13 Sep 2021
Accepted author manuscript
File Access Level
Open
Output statusPublished
References

1. W. Ahmed and K. Subraman: 'Emerging Nanotechnologies for Dentistry'; 2011, Oxford, William Andrew Publishing.
2. L. K. Prasad and H. Smyth, Drug Development and Industrial Pharmacy, 2016, 42(7), 1019-1031.
3. K. Schwab: 'The Fourth Industrial Revolution: what it means, how to respond (2016)', World Economic Forum, 2017.
4. C. Qiu, N. J. E. Adkins, H. Hassanin, M. M. Attallah, and K. Essa, Materials & Design, 2015, 87, 845-853.
5. H. Klippstein, H. Hassanin, A. Diaz De Cerio Sanchez, Y. Zweiri, and L. Seneviratne, Advanced Engineering Materials, 2018, 20(9), 1800290.
6. K. Essa, H. Hassanin, M. M. Attallah, N. J. Adkins, A. J. Musker, G. T. Roberts, N. Tenev, and M. Smith, Applied Catalysis A: General, 2017, 542, 125-135.
7. S. Li, H. Hassanin, M. M. Attallah, N. J. E. Adkins, and K. Essa, Acta Materialia, 2016, 105, 75-83.
8. H. Hassanin, L. Finet, S. C. Cox, P. Jamshidi, L. M. Grover, D. E. T. Shepherd, O. Addison, and M. M. Attallah, Additive Manufacturing, 2018, 20, 144-155.
9. A. Sabouri, A. K. Yetisen, R. Sadigzade, H. Hassanin, K. Essa, and H. Butt, Energy & Fuels, 2017, 31(3), 2524-2529.
10. H. Klippstein, A. Diaz De Cerio Sanchez, H. Hassanin, Y. Zweiri, and L. Seneviratne, Advanced Engineering Materials, 2018, 20(2), 1700552.
11. A. Galatas, H. Hassanin, Y. Zweiri, and L. Seneviratne, Polymers, 2018, 10(11), 1262.
12. K. S. Teh, Frontiers of Mechanical Engineering, 2017, 12(4), 490-509.
13. M. Vaezi, H. Seitz, and S. Yang, International Journal of Advanced Manufacturing Technology, 2013, 67(5-8), 1721-1754.
14. S. Arscott, Lab on a Chip, 2014, 14(19), 3668-3689.
15. I. Zine-El-Abidine and M. Okoniewski, IEEE Transactions on Advanced Packaging, 2009, 32(2), 448-452.
16. T. W. Harris: 'Chemical Milling'; 1976, Oxford, Clarendon Press.
17. K. Essa, F. Modica, M. Imbaby, M. A. El-Sayed, A. ElShaer, K. Jiang, and H. Hassanin, The International Journal of Advanced Manufacturing Technology, 2017, 91(1), 445-452.
18. H. Hassanin and K. Jiang, Journal of Micromechanics and Microengineering, 2013, 24(1), 015018.
19. H. Hassanin and K. Jiang, Microelectronic Engineering, 2011, 88(11), 3275-3277.
20. H. Hassanin and K. Jiang, Microelectronic Engineering, 2010, 87(5), 1610-1613.
21. H. Hassanin and K. Jiang, Microelectronic Engineering, 2009, 86(4), 929-932.
22. H. Hassanin and K. Jiang, Advanced Engineering Materials, 2009, 11(1‐2), 101-105.
23. H. Hassanin and K. Jiang, Microelectronic Engineering, 2010, 87(5), 1617-1619.
24. S. Brittain, K. Paul, X.-M. Zhao, and G. Whitesides, Physics World, 1998, 11(5), 31.
25. Y. Xia and G. M. Whitesides, Annual Review of Materials Science, 1998, 28(1), 153-184.
26. J. A. Rogers and R. G. Nuzzo, Materials Today, 2005, 8(2), 50-56.
27. M. Brehmer, L. Conrad, and L. Funk, Journal of Dispersion Science and Technology, 2003, 24(3-4), 291-304.
28. J. H. Yoo and W. Gao, International Journal of Modern Physics B, 2003, 17(8-9), 1147-1151.
29. P. Sarkar, O. Prakash, G. Wang, and R. Nicholson: 'Micro-laminate ceramic/ceramic composites (ysz/aizoq) by electrophoretic deposition', 18th Annual Conference on Composites and Advanced Ceramic Materials, Cocoa Beach, 2009, John Wiley & Sons, 1019.
30. H. Von Both, M. Dauscher, and J. Haußelt: 'Fabrication of microstructured ceramics by electrophoretic deposition of optimized suspensions', 28th International Conference on Advanced Ceramics and Composites Cocoa Beach, 2004, 135-140.
31. S. Bonnas, H.-J. Ritzhaupt-Kleissl, and J. Hausselt, Journal of the European Ceramic Society, 2010, 30(5), 1159-1162.
32. J. Laubersheimer, H. J. Ritzhaupt-Kleissl, J. Hausselt, and G. Emig, Journal of the European Ceramic Society, 1998, 18(3), 255-260.
33. S. Hill, Materials World, 2001, 9(6), 24-25.
34. C. A. Griffiths, S. S. Dimov, E. B. Brousseau, and R. T. Hoyle, Journal of Materials Processing Technology, 2007, 189(1-3), 418-427.
35. V. N. Stone, S. J. Baldock, L. A. Croasdell, L. A. Dillon, P. R. Fielden, N. J. Goddard, C. L. P. Thomas, and B. J. T. Brown, Journal of Chromatography A, 2007, 1155(2), 199-205.
36. S. D. J. Hill, K. P. Kamper, U. Dasbach, J. Dopper, W. Erhfeld, and M. Kaupert: 'An investigation of computer modelling for micro-injection moulding', Simulation and Design of Microsystems and Microstructures, Southampton, 1995, 275-283.
37. H. M. Chow, B. H. Yan, and F. Y. Huang, Journal of Materials Processing Technology, 1999, 91(1), 161-166.
38. C. Shun-Tong, Journal of Micromechanics and Microengineering, 2008, 18, 085002 (085009 pp.).
39. K. Egashira and K. Mizutani, Precision Engineering, 2002, 26(3), 263-268.
40. F.-T. Weng, R. F. Shyu, and C.-S. Hsu, Journal of Materials Processing Technology, 2003, 140, 332-334.
41. R. Phatthanakun, P. Songsiriritthigul, P. Klysubun, and N. Chomnawang: 'Multi-step powder casting and X-ray lithography of SU-8 resist for complicated 3D microstructures', 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology Piscataway, NJ, USA, 2008, IEEE, 805-808.
42. J. T. Sheu, K. S. You, C. H. Wu, and K. M. Chang: 'Optimization of KOH wet etching process in silicon nanofabrication', Proceedings of the 2001 1st IEEE Conference on Nanotechnology. , Piscataway, NJ, USA, 2001, 213-217.
43. Y. F. Chang, Q. R. Chou, J. Y. Lin, and C. H. Lee, Applied Physics A (Materials Science Processing), 2007, 193-196.
44. A. Sammak, S. Azimi, N. Izadi, B. K. Hosseinieh, and S. Mohajerzadeh, Journal of Microelectromechanical Systems, 2007, 16(4), 912-918.
45. X. Y. Wei, Z. G. Zhu, P. D. Prewett, and K. Jiang, Microelectronic Engineering, 2007, 84(5-8), 1256-1259.
46. H. M. a. S. Juodkazis: '3D Laser Microfabrication'; 2006, Weinheim, Germany, WILEY-VCH Verlag GmbH & Co.
47. C. Jimin and Y. Yuehua: 'Laser micro-fabrication in RF MEMS switches', 2009 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Sciences Meeting, ANTEM/URSI 2009, February 15, 2009 - February 18, 2009, Banff, AB, Canada, 2009, Inst. of Elec. and Elec. Eng. Computer Society.
48. M. S. Amer, L. Dosser, S. LeClair, and J. F. Maguire, Applied Surface Science, 2002, 187, 291-296.
49. M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, Applied Surface Science, 2005, 242, 162-167.
50. B. E. Deal and A. Grove, Journal of Applied Physics, 1965, 36(12), 3770-3778.
51. J. Nulman, J. Krusius, and A. Gat, IEEE, Electron Device Letters, 1985, 6(5), 205-207.
52. M. J. Madou: 'Fundamentals of Microfabrication: The Science of Miniaturization'; 2002, Florida, CRC Press.
53. A. Dollet, Surface and coatings Technology, 2004, 177, 245-251.
54. T. Haatainen, P. Majander, T. Makela, and J. Ahopelto: 'Imprinted 50 nm features by UV step and stamp imprint lithography method', 2007 Digest of papers Microprocesses and Nanotechnology, 5-8 Nov. 2007, 2007, 280-281.
55. Y. Yang and K. W. Leong: 'Chapter 1 - Microfluidic Cell Culture Platforms with Embedded Nanoscale Features', in 'Microfluidic Cell Culture Systems', (eds. C. Bettinger, et al.), 3-26; 2013, Oxford, William Andrew Publishing.
56. W. Ahmed, M. J. Jackson, and I. Ul Hassan: 'Chapter 1 - Nanotechnology to Nanomanufacturing', in 'Emerging Nanotechnologies for Manufacturing (Second Edition)', (eds. W. Ahmed, et al.), 1-13; 2015, Boston, William Andrew Publishing.
57. J.-S. Chu, M. D. Gilchrist, and N. Zhang: 'Microinjection Molding for Microfluidics Applications', in 'Encyclopedia of Microfluidics and Nanofluidics', (ed. D. Li), 2085-2101; 2015, New York, NY, Springer New York.
58. Z. Xiao, M. Dahmardeh, M. V. Moghaddam, A. Nojeh, and K. Takahata, Microelectronic Engineering, 2016, 150, 64-70.
59. B. W. K. Woo, S. C. Gott, R. A. Peck, D. Yan, M. W. Rommelfanger, and M. P. Rao, ACS applied materials & interfaces, 2017, 9(23), 20161-20168.
60. I. Litvinyuk and M. Rybachuk: 'Femtosecond laser micromachining of diamond: current research status, applications and challenges'; 2021,
61. Anon: 'Nanostructured Films and Coating by Evaporation, Sputtering, Thermal Spraying, Electro- and Electroles Deposition', in 'Handbook of Nanophase and Nanostructured Materials', (eds. Z. L. Wang, et al.), 246-277; 2002, Boston, MA, Springer US.
62. W. Ouyang and W. Wang, Biomicrofluidics, 2014, 8(5), 052106.
63. V. Vasilyev, N. B. Morozova, T. Basova, I. Igumenov, and A. K. Hassan, RSC Adv., 2015, 5.
64. T. Langford, A. Mohammed, K. Essa, A. Elshaer, and H. Hassanin, Applied Sciences, 2021, 11(1), 332.
65. M. A. El-Sayed, K. Essa, M. Ghazy, and H. Hassanin, The International Journal of Advanced Manufacturing Technology, 2020, 110(9), 2257-2268.
66. H. Hassanin, A. Abena, M. A. Elsayed, and K. Essa, Micromachines, 2020, 11(8), 745.
67. H. Hassanin, Y. Alkendi, M. Elsayed, K. Essa, and Y. Zweiri, Advanced Engineering Materials, 2020, 22(3), 1901338.
68. X. Zhang, X. N. Jiang, and C. Sun, Sensors and Actuators A: Physical, 1999, 77(2), 149-156.
69. Q. Geng, D. Wang, P. Chen, and S.-C. Chen, Nature Communications, 2019, 10(1), 2179.
70. E. Behroodi, H. Latifi, and F. Najafi, Scientific Reports, 2019, 9(1), 19692.
71. P. Regenfuss, A. Streek, L. Hartwig, S. Klötzer, T. Brabant, M. Horn, R. Ebert, and H. Exner, Rapid Prototyping Journal, 2007, 13(4), 204-212.
72. N. K. Roy, D. Behera, O. G. Dibua, C. S. Foong, and M. A. Cullinan, Microsystems & Nanoengineering, 2019, 5(1), 64.
73. R. Braudy, Proceedings of the IEEE, 1969, 57(10), 1771-1772.
74. J. Bohandy, B. Kim, and F. Adrian, Journal of Applied Physics, 1986, 60(4), 1538-1539.
75. A. Piqué, R. C. Y. Auyeung, H. Kim, N. Charipar, and S. Mathews, Journal of Physics D: Applied Physics, 2016, 49, 223001.
76. R. Bähnisch, W. Groß, J. Staud, and A. Menschig, Sensors and Actuators A: Physical, 1999, 74(1), 31-34.
77. T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, Composites Part B: Engineering, 2018, 143, 172-196.
78. K. Cai, B. Román-Manso, J. E. Smay, J. Zhou, M. I. Osendi, M. Belmonte, and P. Miranzo, Journal of the American Ceramic Society, 2012, 95(8), 2660-2666.
79. M. Touri, F. Moztarzadeh, N. A. A. Osman, M. M. Dehghan, and M. Mozafari, Ceramics International, 2019, 45(1), 805-816.
80. I. Endo, S. Ohno, Y. Sato, S. Saito, and T. Nakagiri, Liquid jet recording process and apparatus therefor. 1982, Google Patents.
81. J. Brünahl and A. M. Grishin, Sensors and Actuators A: Physical, 2002, 101(3), 371-382.
82. A. Shama: 'Study of Microfluidic Mixing and Droplet Generation for 3D Printing of Nuclear Fuels', 2017.
83. A. Roshanghias, M. Dreissigacker, C. Scherf, C. Bretthauer, L. Rauter, J. Zikulnig, T. Braun, K. F. Becker, S. Rzepka, and M. Schneider-Ramelow, Micromachines, 2020, 11(6).
84. D. X. Luong, A. K. Subramanian, G. A. L. Silva, J. Yoon, S. Cofer, K. Yang, P. S. Owuor, T. Wang, Z. Wang, J. Lou, P. M. Ajayan, and J. M. Tour, Advanced Materials, 2018, 30(28), 1707416.
85. G. T. Chu, G. A. Brady, W. Miao, and J. W. Halloran, MRS Proceedings, 1998, 542, 119.
86. W. Liu, H. Wu, Z. Tian, Y. Li, Z. Zhao, M. Huang, X. Deng, Z. Xie, and S. Wu, Journal of the American Ceramic Society, 2019, 102(5), 2257-2262.
87. V. K. Varadan and V. V. Varadan: 'Micro stereo lithography for fabrication of 3D polymeric and ceramic MEMS', Proceedings of SPIE - The International Society for Optical Engineering, 2001, 147-157.
88. X. Song, Z. Chen, L. Lei, K. Shung, Q. Zhou, and Y. Chen, Rapid Prototyping Journal, 2017, 23(1), 44-53.
89. W. Chen, F. Wang, K. Yan, Y. Zhang, and D. Wu, Ceramics International, 2019, 45(4), 4880-4885.
90. Z. C. Eckel, C. Zhou, J. H. Martin, A. J. Jacobsen, W. B. Carter, and T. A. Schaedler, Science, 2016, 351(6268), 58-62.
91. X. Zheng, H. Lee, T. Weisgraber, M. Shusteff, J. DeOtte, E. Duoss, J. Kuntz, M. Biener, Q. Ge, J. Jackson, S. Kucheyev, N. Fang, and C. Spadaccini, Science, 2014, 344, 1373-1377.
92. Y.-M. Ha, J.-W. Choi, and S. Lee, Journal of Mechanical Science and Technology, 2008, 22, 514-521.
93. E. Käpylä, S. Turunen, and M. Kellomäki, Micro and Nanosystems, 2010, 2(2), 87-99.
94. X. Zhou, Y. Hou, and J. Lin, AIP Advances, 2015, 5(3), 030701.
95. K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, Progress in Polymer Science, 2008, 33(6), 631-681.
96. H. O. T. Ware and C. Sun, Journal of Micro and Nano-Manufacturing, 2019, 7(3).
97. J. Bauer, C. Crook, A. Guell Izard, Z. C. Eckel, N. Ruvalcaba, T. A. Schaedler, and L. Valdevit, Matter, 2019, 1(6), 1547-1556.
98. J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone, Science, 2015, 347(6228), 1349-1352.
99. W. Huang, X. Zhang, Q. Wu, and B. Wu, Rapid Prototyping Journal, 2013, 19(5), 319-326.
100. E. Peng, D. Zhang, and J. Ding, Advanced Materials, 2018, 30(47), 1802404.
101. X. Zhao†, J. R. G. Evans, M. J. Edirisinghe, and J.-H. Song, Journal of the American Ceramic Society, 2002, 85(8), 2113-2115.
102. J. Lessing, A. C. Glavan, S. B. Walker, C. Keplinger, J. A. Lewis, and G. M. Whitesides, Advanced Materials, 2014, 26(27), 4677-4682.
103. M. A. Skylar-Scott, S. Gunasekaran, and J. A. Lewis, Proceedings of the National Academy of Sciences, 2016, 113(22), 6137-6142.
104. P. Regenfuss, Rapid Prototyping Journal, 2007, 13(4), 204-212.
105. T. Petsch, P. Regenfuß, R. Ebert, L. Hartwig, S. Klötzer, T. Brabant, and H. Exner: 'Industrial laser micro sintering', ICALEO 2004 - 23rd International Congress on Applications of Laser and Electro-Optics, Congress Proceedings, 2004.
106. J. Chen, J. Yang, and T. Zuo: 'Micro Fabrication with Selective Laser Micro Sintering', 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 18-21 Jan. 2006, 2006, 426-429.
107. H. Exner, M. Horn, A. Streek, F. Ullmann, L. Hartwig, P. Regenfuß, and R. Ebert, Virtual and Physical Prototyping, 2008, 3(1), 3-11.
108. D. Chrisey, A. Pique, J. Fitz-Gerald, R. C. Y. Auyeung, R. McGill, H. D. Wu, and M. Duignan, Ž . Applied Surface Science, 2000, 154155, 593-600.
109. C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ‘t Veld, and D. Lohse, Advanced Materials, 2015, 27(27), 4087-4092.
110. A. Piqué, D. Chrisey, R. C. Y. Auyeung, J. Fitz-Gerald, H. D. Wu, R. McGill, S. Lakeou, P. K. Wu, V. Nguyen, and M. Duignan, Applied Physics A, 1999, 69, S279-S284.
111. H. Windsheimer, N. Travitzky, A. Hofenauer, and P. Greil, Advanced Materials, 2007, 19(24), 4515-4519.
112. C. J. Robinson, B. Stucker, A. J. Lopes, R. Wicker, and J. A. Palmer, 17th Solid Freeform Fabrication Symposium, SFF 2006, 2006, 60-69.
113. J. J. Adams, E. B. Duoss, T. F. Malkowski, M. J. Motala, B. Y. Ahn, R. G. Nuzzo, J. T. Bernhard, and J. A. Lewis, Advanced Materials, 2011, 23(11), 1335-1340.
114. N. Zhou, C. Liu, J. A. Lewis, and D. Ham, Advanced Materials, 2017, 29(15), 1605198.
115. C. Liu, X. Cheng, B. Li, Z. Chen, S. Mi, and C. Lao, Materials (Basel, Switzerland), 2017, 10(8).
116. S. Castillo, D. Muse, F. Medina, E. MacDonald, and R. Wicker: 'Electronics integration in conformal substrates fabricated with additive layered manufacturing', 20th Annual International Solid Freeform Fabrication Symposium, SFF 2009, 2009, 730-737.
117. G. D. Liu, C. H. Wang, Z. L. Jia, and K. X. Wang, Journal of Micromechanics and Microengineering, 2021, 31(6).
118. J. Odent, T. J. Wallin, W. Pan, K. Kruemplestaedter, R. F. Shepherd, and E. P. Giannelis, Advanced Functional Materials, 2017, 27(33), 1701807.
119. Q. Mu, L. Wang, C. K. Dunn, X. Kuang, F. Duan, Z. Zhang, H. J. Qi, and T. Wang, Additive Manufacturing, 2017, 18, 74-83.
120. S. Ghoshal, Fibers, 2017, 5(4), 40.
121. D. S. Kolchanov, I. Mitrofanov, A. Kim, Y. Koshtyal, A. Rumyantsev, E. Sergeeva, A. Vinogradov, A. Popovich, and M. Y. Maximov, Energy Technology, 2020, 8(3), 1901086.
122. H. Esrom, J.-Y. Zhang, U. Kogelschatz, and A. J. Pedraza, Applied Surface Science, 1995, 86(1), 202-207.
123. T. H. J. van Osch, J. Perelaer, A. W. M. de Laat, and U. S. Schubert, Advanced Materials, 2008, 20(2), 343-345.
124. S.-Y. Wu, C. Yang, W. Hsu, and L. Lin, Microsystems & Nanoengineering, 2015, 1(1), 15013.
125. J. Hörber, C. Goth, and J. Franke, International Symposium on Microelectronics, 2012, 2012, 000741-000748.
126. G. Aspar, B. Goubault, O. Lebaigue, J. C. Souriau, G. Simon, L. D. Cioccio, and Y. Brechet: '3D Printing as a New Packaging Approach for MEMS and Electronic Devices', Proceedings - Electronic Components and Technology Conference, 2017, 1071-1079.
127. B. Goubault, G. Aspar, J. C. Souriau, L. Castagne, S. Simon, L. Di Cioccio, and Y. Brechet: 'A New Microsystem Packaging Approach Using 3D Printing Encapsulation Process', Proceedings - Electronic Components and Technology Conference, 2018, 118-124.
128. B. Tehrani, R. A. Bahr, W. Su, B. Cook, and M. Tentzeris: 'E-band characterization of 3D-printed dielectrics for fully-printed millimeter-wave wireless system packaging', 1756-1759; 2017,
129. Y. Ma, J. Kaczynski, C. Ranacher, A. Roshanghias, M. Zauner, and B. Abasahl, Microelectronic Engineering, 2018, 198, 29-34.
130. N. Masurkar, G. Babu, S. Porchelvan, and L. M. Reddy Arava, Journal of Power Sources, 2018, 399, 179-185.
131. W. Lee, D. Kwon, W. Choi, G. Y. Jung, A. K. Au, A. Folch, and S. Jeon, Scientific Reports, 2015, 5(1), 7717.
132. S. M. Scott and Z. Ali, Micromachines, 2021, 12(3), 319.
133. A. Waldbaur, H. Rapp, K. Länge, and B. E. Rapp, Analytical Methods, 2011, 3(12), 2681-2716.
134. J. C. McDonald, M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock, and G. M. Whitesides, Analytical Chemistry, 2002, 74(7), 1537-1545.
135. J. S. O'Connor, H. Kim, E. Gwag, L. Abelmann, B. Sung, and A. Manz: '3D Printing for Microgel-Based Liver Cell Encapsulation', Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2021, 1023-1026.
136. G. Comina, A. Suska, and D. Filippini, Lab on a Chip, 2014, 14(16), 2978-2982.
137. M. Villegas, Z. Cetinic, A. Shakeri, and T. F. Didar, Analytica Chimica Acta, 2018, 1000, 248-255.
138. H. N. Chan, Y. Chen, Y. Shu, Y. Chen, Q. Tian, and H. Wu, Microfluidics and Nanofluidics, 2015, 19(1), 9-18.
139. W. Lee, D. Kwon, B. Chung, G. Y. Jung, A. Au, A. Folch, and S. Jeon, Anal Chem, 2014, 86(13), 6683-6688.
140. R. Acevedo, Z. Wen, I. B. Rosenthal, E. Z. Freeman, M. Restaino, N. Gonzalez, and R. D. Sochol: '3d Nanoprinted External Microfluidic Structures Via Ex Situ Direct Laser Writing', Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2021, 10-13.
141. D. Y. Fozdar, P. Soman, J. W. Lee, L. H. Han, and S. Chen, Adv Funct Mater, 2011, 21(14), 2712-2720.
142. G. van der Velden, D. Fan, and U. Staufer, Micro and Nano Engineering, 2020, 7, 100054.
143. D. Chudobova, K. Cihalova, S. Skalickova, J. Zitka, M. A. Rodrigo, V. Milosavljevic, D. Hynek, P. Kopel, R. Vesely, V. Adam, and R. Kizek, Electrophoresis, 2015, 36(3), 457-466.
144. K. B. Anderson, S. Y. Lockwood, R. S. Martin, and D. M. Spence, Anal Chem, 2013, 85(12), 5622-5626.
145. L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini, Lab on a Chip, 2014, 14(13), 2202-2211.
146. M. Carve and D. Wlodkowic, Micromachines, 2018, 9(2), 91.
147. F. Zhu, N. Macdonald, J. Cooper, and D. Wlodkowic: 'Additive manufacturing of lab-on-a-chip devices: promises and challenges'; 2013, SPIE.
148. X. Ma, X. Qu, W. Zhu, Y.-S. Li, S. Yuan, H. Zhang, J. Liu, P. Wang, C. S. E. Lai, F. Zanella, G.-S. Feng, F. Sheikh, S. Chien, and S. Chen, Proceedings of the National Academy of Sciences, 2016, 113(8), 2206-2211.
149. M. H. Farazmand, R. Rodrigues, J. W. Gardner, and J. Charmet: 'Design and Development of a Disposable Lab-on-a-Chip for Prostate Cancer Detection', 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 23-27 July 2019, 2019, 1579-1583.
150. J. Y. Park, H. Ryu, B. Lee, D.-H. Ha, M. Ahn, S. Kim, J. Y. Kim, N. L. Jeon, and D.-W. Cho, Biofabrication, 2018, 11(1), 015002.
151. J. Sapudom and T. Pompe, Biomaterials Science, 2018, 6(8), 2009-2024.
152. A. Sydney Gladman, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, and J. A. Lewis, Nature Materials, 2016, 15(4), 413-418.
153. J. Schmidt and P. Colombo, Journal of the European Ceramic Society, 2018, 38(1), 57-66.
154. A. Streek, P. Regenfuß, T. Süß, R. Ebert, and H. Exner: 'Laser micro sintering of SiO2 with an NIR-laser'; 2008, SPIE.
155. R. Ebert, F. Ullmann, L. Hartwig, T. Suess, S. Kloetzer, A. Streek, J. Schille, P. Regenfuss, and H. Exner: 'Laser microsintering of tungsten in vacuum', Proceedings of SPIE - The International Society for Optical Engineering, 2010.
156. C. Dai, H. H. Zhu, L. D. Ke, W. J. Lei, and B. J. Chen: 'Development a Cu-based metal powder for selective laser micro sintering', 1 Journal of Physics: Conference Series, 2011.
157. H. Hassanin, F. Modica, M. A. El-Sayed, J. Liu, and K. Essa, Advanced Engineering Materials, 2016, 18(9), 1544-1549.
158. B. Derby, Journal of Materials Science, 2002, 37, 3091-3092.
159. M. S. Thomas, B. Millare, J. M. Clift, D. Bao, C. Hong, and V. I. Vullev, Annals of Biomedical Engineering, 2010, 38(1), 21-32.
160. N. Bhattacharjee, C. Parra-Cabrera, Y. T. Kim, A. P. Kuo, and A. Folch, Advanced Materials, 2018, 30(22), 1800001.
161. E. Fantino, A. Chiappone, I. Roppolo, D. Manfredi, R. Bongiovanni, C. F. Pirri, and F. Calignano, Advanced Materials, 2016, 28(19), 3712-3717.
162. Y. Pan, H. He, J. Xu, and A. Feinerman, Rapid Prototyping Journal, 2017, 23(2), 353-361.
163. A. Licciulli, C. E. Corcione, A. Greco, V. Amicarelli, and A. Maffezzoli, Journal of The European Ceramic Society, 2005, 25(9), 1581-1589.
164. J. A. Lewis, Advanced Functional Materials, 2006, 16(17), 2193-2204.

Permalink -

https://repository.canterbury.ac.uk/item/8y989/micro-additive-manufacturing-technologies-of-three-dimensional-mems

Download files


Accepted author manuscript
paper No2 v20 final.pdf
File access level: Open

  • 320
    total views
  • 44
    total downloads
  • 5
    views this month
  • 3
    downloads this month

Export as

Related outputs

Designing lightweight 3D-printable bioinspired structures for enhanced compression and energy absorption properties
Harish, A., A. Alsaleh, N., Ahmadein, M., Elfar, A., Djuansjah, J., Hassanin, H., El-Sayed, M. and Essa, K. 2024. Designing lightweight 3D-printable bioinspired structures for enhanced compression and energy absorption properties. Polymers. 16 (6), p. 729. https://doi.org/10.3390/polym16060729
A novel vision-based multi-functional sensor for normality and position measurements in precise robotic manufacturing
Halwani, M., Ayyad, A., AbuAssi, L., Abdulrahman, Y., Almaskari, F., Hassanin, H., Abusafieh, A. and Zweiri, Y. 2024. A novel vision-based multi-functional sensor for normality and position measurements in precise robotic manufacturing. Precision Engineering. 88, pp. 367-381. https://doi.org/10.1016/j.precisioneng.2024.02.015
Optimisation of a novel hot air contactless single incremental point forming of polymers
Almadani, M., Guner, A., Hassanin, H. and Essa, K. 2024. Optimisation of a novel hot air contactless single incremental point forming of polymers. Journal of Manufacturing Processes. 117, pp. 302-314. https://doi.org/10.1016/j.jmapro.2024.02.042
Advancing safety and efficiency in critical infrastructure with a novel SOC estimation for battery storage systems: A focus on second life batteries
Al-Alawi, M., Cugley, J., Jaddoa, A. and Hassanin, H. 2024. Advancing safety and efficiency in critical infrastructure with a novel SOC estimation for battery storage systems: A focus on second life batteries.
Contactless single point incremental forming: Experimental and numerical simulation
Almadani, M., Guner, A., Hassanin, H., De Lisi, Michele. and Essa, K. 2023. Contactless single point incremental forming: Experimental and numerical simulation. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-023-12401-1
Hot-air contactless single-point incremental forming
Almadani, M., Guner, A., Hassanin, H. and Essa, K. 2023. Hot-air contactless single-point incremental forming. Journal of Manufacturing and Materials Processing. 7 (5), p. 179. https://doi.org/10.3390/jmmp7050179
Optimising surface roughness and density in titanium fabrication via laser powder bed fusion
Hassanin, H., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ataya, S., Ahmed, M. and Essa, K. 2023. Optimising surface roughness and density in titanium fabrication via laser powder bed fusion. Micromachines. 14 (8), p. 1642. https://doi.org/10.3390/mi14081642
Hybrid finite element–smoothed particle hydrodynamics modelling for optimizing cutting parameters in CFRP composites
Abena, A., Ataya, S., Hassanin, H., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ahmed, M. and Essa, K. 2023. Hybrid finite element–smoothed particle hydrodynamics modelling for optimizing cutting parameters in CFRP composites. Polymers. 15 (13), p. 2789. https://doi.org/10.3390/polym15132789
Embracing sustainable farming: Unleashing the circular economy potential of second-life EV batteries in agricultural applications
Al-Alawi, M., Cugley, J. and Hassanin, H. 2023. Embracing sustainable farming: Unleashing the circular economy potential of second-life EV batteries in agricultural applications.
Entrained defects and mechanical properties of aluminium castings
El-Sayed, M., Essa, K. and Hassanin, H. 2023. Entrained defects and mechanical properties of aluminium castings.
Review on engineering of bone scaffolds using conventional and additive manufacturing technologies
Mohammed, A., Jiménez, A., Bidare, P., Elshaer, A., Memić, A., Hassanin, H. and Essa, K. 2023. Review on engineering of bone scaffolds using conventional and additive manufacturing technologies. 3D Printing and Additive Manufacturing. https://doi.org/10.1089/3dp.2022.0360
Preparation of polylactic acid/calcium peroxide compo-site filaments for fused deposition modelling
Mohammed, A., Kovacev , N., Elshaer, A., Melaibari, A., Iqbal, J., Hassanin, H., Essa, K. and Memić, A. 2023. Preparation of polylactic acid/calcium peroxide compo-site filaments for fused deposition modelling. Polymers. 15 (9), p. 2229. https://doi.org/10.3390/polym15092229
Non-destructive disassembly of interference fit under wear conditions for sustainable remanufacturing
Yeung, H., Ataya, S., Hassanin, H., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ahmed, M. and Essa, K. 2023. Non-destructive disassembly of interference fit under wear conditions for sustainable remanufacturing. Machines. 11 (5), p. 538. https://doi.org/10.3390/machines11050538
Fabrication and characterization of oxygen-generating polylactic acid/calcium peroxide composite filaments for bone scaffolds
Mohammed, A., Saeed, A., Elshaer, A., Melaibari, A., Memić, A., Hassanin, H. and Essa, K. 2023. Fabrication and characterization of oxygen-generating polylactic acid/calcium peroxide composite filaments for bone scaffolds. Pharmaceuticals. 16 (4), p. 627. https://doi.org/10.3390/ph16040627
Using second-life batteries and solar power to help farms become energy efficient.
Al-Alawi, M., Cugley, J. and Hassanin, H. 2023. Using second-life batteries and solar power to help farms become energy efficient. Canterbury Christ Church University.
Chip formation and orthogonal cutting optimisation of unidirectional carbon fibre composites
Hassanin, H., Abena, A., Soo, L., Ataya, S., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ahmed, M. and Essa, K. 2023. Chip formation and orthogonal cutting optimisation of unidirectional carbon fibre composites. Polymers. 15 (8), p. 1897. https://doi.org/10.3390/polym15081897
Fabrication and Optimisation of Ti-6Al-4V Lattice-Structured Total Shoulder Implants Using Laser Additive Manufacturing
Bittredge, Oliver, Hassanin, H., El-Sayed, M., Eldessouky, Hossam Mohamed, A. Alsaleh, N., Alrasheedi, Nashmi H., Essa, K. and Ahmadein, M. 2022. Fabrication and Optimisation of Ti-6Al-4V Lattice-Structured Total Shoulder Implants Using Laser Additive Manufacturing. Materials (Basel, Switzerland). 15 (9), p. e3095. https://doi.org/10.3390/ma15093095
Influence of Bifilm Defects Generated during Mould Filling on the Tensile Properties of Al−Si−Mg Cast Alloys
El-Sayed, M., Essa, K. and Hassanin, H. 2022. Influence of Bifilm Defects Generated during Mould Filling on the Tensile Properties of Al−Si−Mg Cast Alloys. Metals. 12 (1), p. e160. https://doi.org/10.3390/met12010160
Elastomer-based visuotactile sensor for normality of robotic manufacturing systems
Hassanin, H., Zaid, I., Halwani, M., Ayyad, A., Imam, A., Almaskari, F. and Zweiri, Y. 2022. Elastomer-based visuotactile sensor for normality of robotic manufacturing systems. Polymers. 14 (23), p. 5097. https://doi.org/10.3390/polym14235097
Techno-economic feasibility of retired electric-vehicle batteries repurpose/reuse in second-life applications: A systematic review
Hassanin, H., Al-Alawi, M. and Cugley, J. 2022. Techno-economic feasibility of retired electric-vehicle batteries repurpose/reuse in second-life applications: A systematic review. Energy and Climate Change. 3 (100086). https://doi.org/10.1016/j.egycc.2022.100086
Planning, operation, and design of market-based virtual power plant considering uncertainty
Hassanin, H., Ullah, Z., Arshad, Cugley, J. and Al-Alawi, M. 2022. Planning, operation, and design of market-based virtual power plant considering uncertainty. Energies. 19 (15), p. 7290. https://doi.org/10.3390/en15197290
The epistemic insight digest: Issue : Autumn 2022
Gordon, A., Shalet, D., Simpson, S., Hassanin, H., Lawson, F., Lawson, M., Litchfield, A., Thomas, C., Canetta, E., Manley, K. and Choong, C. Shalet, D. (ed.) 2022. The epistemic insight digest: Issue : Autumn 2022. Canterbury Canterbury Christ Church University.
Modeling, optimization, and analysis of a virtual power plant demand response mechanism for the internal electricity market considering the uncertainty of renewable energy sources
Ullah, Z., Arshad and Hassanin, H. 2022. Modeling, optimization, and analysis of a virtual power plant demand response mechanism for the internal electricity market considering the uncertainty of renewable energy sources. Energies. 15 (14), p. 5296. https://doi.org/doi.org/10.3390/en15145296
Interdisciplinary engineering education - essential for the 21st century
Gordon, A., Simpson, S. and Hassanin, H. 2022. Interdisciplinary engineering education - essential for the 21st century.
Multipoint forming using hole-type rubber punch
Hassanin, H., Tolipov, A., El-Sayed, M., Eldessouky, H., A. Alsaleh, N., Alfozan, A., Essa, K. and Ahmadein, M. 2022. Multipoint forming using hole-type rubber punch. Metals. 12 (3), p. 491. https://doi.org/10.3390/met12030491
Multistage Tool Path Optimisation of Single-Point Incremental Forming Process
Yan, Zhou, Hassanin, H., El-Sayed, M., Eldessouky, Hossam Mohamed, Djuansjah, Joy Rizki Pangestu, A. Alsaleh, N., Essa, K. and Ahmadein, M. 2021. Multistage Tool Path Optimisation of Single-Point Incremental Forming Process. Materials (Basel, Switzerland). 14 (22), p. e6794. https://doi.org/10.3390/ma14226794
Effect of runner thickness and hydrogen content on the mechanical properties of A356 alloy castings
El-Sayed, M., Essa, K. and Hassanin, H. 2021. Effect of runner thickness and hydrogen content on the mechanical properties of A356 alloy castings . International Journal of Metalcasting. https://doi.org/10.1007/s40962-021-00753-x
Parts design and process optimization
Hassanin, Hany, Bidare, Prveen, Zweiri, Yahya and Essa, Khamis 2021. Parts design and process optimization. in: Salunkhe, S., Hussein, H. and Davim, J. (ed.) Applications of Artificial Intelligence in Additive Manufacturing USA IGI Global. pp. 25-49
The legacy of Verena Holmes: inspiring next generation of engineers
Saeidlou, S., Ishaq, R., Nortcliffe, A. and Ghadiminia, N. 2021. The legacy of Verena Holmes: inspiring next generation of engineers.
Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications
Fan , W., Chen, Y., Li, J., Sun, Y., Feng, F., Hassanin, H. and Sareh, P. 2021. Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications. Structures. 33, pp. 3954-3963. https://doi.org/10.1016/j.istruc.2021.06.110
Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: A review
Bidare, P., Jiménez, A., Hassanin, H. and Essa, K. 2021. Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: A review. Advances in Manufacturing. https://doi.org/10.1007/s40436-021-00365-y
Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approaches
Hassanin, H., Zweiri, Y., Finet, L., Essa, K., Qiu, C. and Attallah, M. 2021. Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approaches. Materials. 14 (8), p. 2056. https://doi.org/10.3390/ma14082056
3DP printing of oral solid formulations: a systematic review
Brambilla, C., Okafor-Muo, O., Hassanin, H. and ElShaer, A. 2021. 3DP printing of oral solid formulations: a systematic review. Pharmaceutics. 13 (3), p. 358. https://doi.org/10.3390/pharmaceutics13030358
Powder-based laser hybrid additive manufacturing of metals: A review
Hassanin, H. 2021. Powder-based laser hybrid additive manufacturing of metals: A review. The International Journal of Advanced Manufacturing Technology.
Adaptive and flexible online learning during Covid19 lockdown
Manna, S., Nortcliffe, A., Sheikholeslami, G. and Richmond-Fuller, A. 2021. Adaptive and flexible online learning during Covid19 lockdown.
Reduction and mitigation strategy of carbon dioxide emissions from internal combustion engine: An engine development initiative for sustainable environment
Mishra, P. C., Ishaq, R. and Khoshnaw, F. 2021. Reduction and mitigation strategy of carbon dioxide emissions from internal combustion engine: An engine development initiative for sustainable environment . Journal of Cleaner Production. 286 (125460). https://doi.org/10.1016/j.jclepro.2020.125460
Micro-fabrication of ceramics: additive manufacturing and conventional technologies
Hassanin, H., Essa, K., Elshaer, A., Imbaby, M. and El-Sayed, T. E. 2021. Micro-fabrication of ceramics: additive manufacturing and conventional technologies. Journal of Advanced Ceramics. 10, pp. 1-27. https://doi.org/10.1007/s40145-020-0422-5
Developing engineering growth mindset through CDIO outreach activities
Manna, S., Nortcliffe, A. and Sheikholeslami, G. 2020. Developing engineering growth mindset through CDIO outreach activities. in: Proceedings of the 16th International CDIO Conference Gothenburg, Sweden CDIO.
4D Printing of origami structures for minimally invasive surgeries using functional scaffold
Langford, T, Mohammed, A., Essa, K., Elshaer, A. and Hassanin, H. 2020. 4D Printing of origami structures for minimally invasive surgeries using functional scaffold. Applied Sciences. 11 (1), p. 332. https://doi.org/10.3390/app11010332
Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile
Hassanin, H., Mohammed, M., Abdel-Wahab, A. and Essa, K 2020. Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile. Materials.
3D printing of solid oral dosage forms: numerous challenges with unique opportunities
Hassanin, H. 2020. 3D printing of solid oral dosage forms: numerous challenges with unique opportunities. Journal of Pharmaceutical Sciences. https://doi.org/10.1016/j.xphs.2020.08.029
Design optimisation of additively manufactured titanium lattice structures for biomedical implants
El-Sayed, M.A., Essa, K., Ghazy, M. and Hassanin, H. 2020. Design optimisation of additively manufactured titanium lattice structures for biomedical implants. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-020-05982-8
4D Printing of NiTi auxetic structure with improved ballistic performance
Hassanin, H., Abena, A., Elsayed, M.A. and Essa, K. 2020. 4D Printing of NiTi auxetic structure with improved ballistic performance. Micromachines. 11 (8), p. 745. https://doi.org/doi.org/10.3390/mi11080745
CDIO Open day learning activity to inspire the next generation of engineering applicants
Nortcliffe, A., Nortcliffe, A. and Sheikholeslami, G. 2019. CDIO Open day learning activity to inspire the next generation of engineering applicants.