Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approaches

Journal article


Hassanin, H., Zweiri, Y., Finet, L., Essa, K., Qiu, C. and Attallah, M. 2021. Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approaches. Materials. 14 (8), p. 2056. https://doi.org/10.3390/ma14082056
AuthorsHassanin, H., Zweiri, Y., Finet, L., Essa, K., Qiu, C. and Attallah, M.
Abstract

Ti-6Al-2Sn-4Zr-6Mo is one of the most important titanium alloys characterised by its high strength, fatigue, and toughness properties, making it a popular material for aerospace and biomedical applications. However, no studies have been reported on processing this alloy using laser powder bed fusion. In this paper, a deep learning neural network (DLNN) was introduced to rationalise and predict the densification and hardness due to Laser Powder Bed Fusion of Ti-6Al-2Sn-4Zr-6Mo alloy. The process optimisation results showed that near-full densification is achieved in Ti-6Al-2Sn-4Zr-6Mo alloy samples fabricated using an energy density of 77–113 J/mm3. Furthermore, the hardness of the builds was found to increase with increasing the laser energy density. Porosity and the hardness measurements were found to be sensitive to the island size, especially at high-energy-density. Hot isostatic pressing (HIP) was able to eliminate the porosity, increase the hardness, and achieve the desirable α and β phases. The developed model was validated and used to produce process maps. The trained deep learning neural network model showed the highest accuracy with a mean percentage error of 3% and 0.2% for the porosity and hardness. The results showed that deep learning neural networks could be an efficient tool for predicting materials properties using small data.

KeywordsDeep learning; Additive manufacturing; Porosity; Powder bed fusion
Year2021
JournalMaterials
Journal citation14 (8), p. 2056
PublisherMDPI
ISSN1996-1944
Digital Object Identifier (DOI)https://doi.org/10.3390/ma14082056
Official URLhttps://www.mdpi.com/1996-1944/14/8/2056
Publication dates
Print19 Apr 2021
Publication process dates
Accepted14 Apr 2021
Deposited22 Apr 2021
Publisher's version
File Access Level
Open
Output statusPublished
References

1. W. Ge, F. Lin, and C. Guo, Materials and Manufacturing Processes, 2018, 33(15), 1708-1713.
2. K. Davidson and S. Singamneni, Materials and Manufacturing Processes, 2016, 31(12), 1543-1555.
3. F. Scherillo, A. Astarita, L. Carrino, C. Pirozzi, U. Prisco, and A. Squillace, Materials and Manufacturing Processes, 2019, 34(2), 201-207.
4. M. Y. Kayacan, K. Özsoy, B. Duman, N. Yilmaz, and M. C. Kayacan, Materials and Manufacturing Processes, 2019, 34(13), 1467-1475.
5. H. Hassanin, F. Modica, M. A. El-Sayed, J. Liu, and K. Essa, Advanced Engineering Materials, 2016, 18(9), 1544-1549.
6. T. Langford, A. Mohammed, K. Essa, A. Elshaer, and H. Hassanin, Applied Sciences, 2021, 11(1), 332.
7. C. R. M. Brambilla, O. L. Okafor-Muo, H. Hassanin, and A. ElShaer, Pharmaceutics, 2021, 13(3), 358.
8. O. L. Okafor-Muo, H. Hassanin, R. Kayyali, and A. ElShaer, Journal of Pharmaceutical Sciences, 2020, 109(12), 3535-3550.
9. H. Hassanin, Y. Alkendi, M. Elsayed, K. Essa, and Y. Zweiri, Advanced Engineering Materials, 2020, 22(3), 1901338.
10. H. Klippstein, H. Hassanin, A. Diaz De Cerio Sanchez, Y. Zweiri, and L. Seneviratne, Advanced Engineering Materials, 2018, 20(9), 1800290.
11. A. Galatas, H. Hassanin, Y. Zweiri, and L. Seneviratne, Polymers, 2018, 10(11), 1262.
12. H. Hassanin, A. Abena, M. A. Elsayed, and K. Essa, Micromachines, 2020, 11(8), 745.
13. M. Schmitt, R. M. Mehta, and I. Y. Kim, Rapid Prototyping Journal, 2020, 26(1), 89-99.
14. A. Mohammed, A. Elshaer, P. Sareh, M. Elsayed, and H. Hassanin, International Journal of Pharmaceutics, 2020, 580, 119245.
15. H. Hassanin and K. Jiang, Microelectronic Engineering, 2010, 87(5), 1617-1619.
16. K. Essa, H. Hassanin, M. M. Attallah, N. J. Adkins, A. J. Musker, G. T. Roberts, N. Tenev, and M. Smith, Applied Catalysis A: General, 2017, 542, 125-135.
17. M. A. El-Sayed, H. Hassanin, and K. Essa, International Journal of Cast Metals Research, 2016, 29(6), 350-354.
18. A. Jiménez, P. Bidare, H. Hassanin, F. Tarlochan, S. Dimov, and K. Essa, The International Journal of Advanced Manufacturing Technology, 2021.
19. K. Essa, R. Khan, H. Hassanin, M. M. Attallah, and R. Reed, The International Journal of Advanced Manufacturing Technology, 2016, 83(9), 1835-1845.
20. A. Sabouri, A. K. Yetisen, R. Sadigzade, H. Hassanin, K. Essa, and H. Butt, Energy & Fuels, 2017, 31(3), 2524-2529.
21. G. B. Olson, Science, 1997, 277(5330), 1237-1242.
22. A. Belhocine and A. Afzal, Australian Journal of Mechanical Engineering, 2020, 1-14.
23. B. Yuan, G. M. Guss, A. C. Wilson, S. P. Hau-Riege, P. J. DePond, S. McMains, M. J. Matthews, and B. Giera, Advanced Materials Technologies, 2018, 3(12), 1800136.
24. D. Weichert, P. Link, A. Stoll, S. Rüping, S. Ihlenfeldt, and S. Wrobel, The International Journal of Advanced Manufacturing Technology, 2019.
25. J. Yang, S. Li, Z. Wang, H. Dong, J. Wang, and S. Tang, Materials, 2020, 13(24), 1-23.
26. Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle: 'Greedy layer-wise training of deep networks', Proceedings of the 19th International Conference on Neural Information Processing Systems, Canada, 2006, MIT Press, 153-160.
27. G. E. Hinton and R. R. Salakhutdinov, Science, 2006, 313(5786), 504-507.
28. G. E. Hinton, S. Osindero, and Y.-W. Teh, Neural Computation, 2006, 18(7), 1527-1554.
29. R. Azzam, T. Taha, S. Huang, and Y. Zweiri: 'A deep learning framework for robust semantic SLAM', 2020 Advances in Science and Engineering Technology International Conferences, ASET 2020, 2020.
30. M. Peters, J. Kumpfert, C. H. Ward, and C. Leyens, Advanced Engineering Materials, 2003, 5(6), 419-427.
31. M. H. I. Alluaibi, E. M. Cojocaru, A. Rusea, N. Șerban, G. Coman, and V. D. Cojocaru, Metals, 2020, 10(9), 1-16.
32. K. Kapoor, P. Ravi, D. Naragani, J.-S. Park, J. D. Almer, and M. D. Sangid, Materials Characterization, 2020, 166, 110410.
33. L. Thijs, F. Verhaeghe, T. Craeghs, J. V. Humbeeck, and J. P. Kruth, Acta Materialia, 2010, 58(9), 3303-3312.
34. B. Vandenbroucke and J. P. Kruth, Rapid Prototyping Journal, 2007, 13(4), 196-203.
35. P. Edwards and M. Ramulu, Materials Science and Engineering A, 2014, 598, 327-337.
36. T. D. Dinh, S. Han, V. Yaghoubi, H. Xiang, H. Erdelyi, T. Craeghs, J. Segers, and W. Van Paepegem, International Journal of Fatigue, 2021, 144.
37. H. Bai, H. Deng, L. Chen, X. Liu, X. Qin, D. Zhang, T. Liu, and X. Cui, Metals, 2021, 11(4).
38. Y. K. Kim, S. H. Park, Y. J. Kim, B. Almangour, and K. A. Lee, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49(11), 5763-5774.
39. T. Sercombe, N. Jones, R. Day, and A. Kop, Rapid Prototyping Journal, 2008, 14(5), 300-304.
40. Y. I. Ganor, E. Tiferet, S. C. Vogel, D. W. Brown, M. Chonin, A. Pesach, A. Hajaj, A. Garkun, S. Samuha, R. Z. Shneck, and O. Yeheskel, Materials, 2021, 14(3), 1-17.
41. L. C. Zhang, J. D. Miller, and T. B. Sercombe: 'Microstructural manipulation and mechanical properties of Ti-24Nb-4Zr-8Sn alloy manufactured by selective laser melting', Ti 2011 - Proceedings of the 12th World Conference on Titanium, 2012, 1740-1743.
42. L. Zhou, T. Yuan, R. Li, J. Tang, M. Wang, and F. Mei, Materials Science and Engineering A, 2018, 725, 329-340.
43. C. K. C. A. Liu, K.F. Leong, Key Engineering Materials, 2010, 447-448, 780-784.
44. J. Schmidhuber, Neural Networks, 2015, 61, 85-117.
45. J. Brownlee: 'Machine Learning Algorithms from Scratch: With Python'; 2017, Jason Brownlee.
46. N. Read, W. Wang, K. Essa, and M. M. Attallah, Materials & Design (1980-2015), 2015, 65, 417-424.
47. M. Elsayed, M. Ghazy, Y. Youssef, and K. Essa, Rapid Prototyping Journal, 2019, 25(3), 433-447.

Permalink -

https://repository.canterbury.ac.uk/item/8x89v/laser-powder-bed-fusion-of-ti-6al-2sn-4zr-6mo-alloy-and-properties-prediction-using-deep-learning-approaches

Download files


Publisher's version
materials-14-02056-v2.pdf
File access level: Open

  • 22
    total views
  • 6
    total downloads
  • 7
    views this month
  • 1
    downloads this month

Export as

Related outputs

Multi stages toolpath optimisation of single point incremental forming process
Hassanin, H., Yan, Z, El-Sayed, M., Eldessouky, H., Djuansjah, J., Alsaleh, N., Essa, K. and Ahmadein, M. 2021. Multi stages toolpath optimisation of single point incremental forming process. Materials.
Micro-additive manufacturing technologies of three-dimensional MEMS
Hassanin, H., Sheikholeslami, G., Pooya, S. and Ishaq, R. 2021. Micro-additive manufacturing technologies of three-dimensional MEMS . Advanced Engineering Materials. https://doi.org/10.1002/adem.202100422
Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications
Fan , W., Chen, Y., Li, J., Sun, Y., Feng, F., Hassanin, H. and Sareh, P. 2021. Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications. Structures. 33, pp. 3954-3963. https://doi.org/10.1016/j.istruc.2021.06.110
Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: A review
Bidare, P., Jiménez, A., Hassanin, H. and Essa, K. 2021. Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: A review. Advances in Manufacturing. https://doi.org/10.1007/s40436-021-00365-y
3DP printing of oral solid formulations: a systematic review
Brambilla, C., Okafor-Muo, O., Hassanin, H. and ElShaer, A. 2021. 3DP printing of oral solid formulations: a systematic review. Pharmaceutics. 13 (3), p. 358. https://doi.org/10.3390/pharmaceutics13030358
Powder-based laser hybrid additive manufacturing of metals: A review
Hassanin, H. 2021. Powder-based laser hybrid additive manufacturing of metals: A review. The International Journal of Advanced Manufacturing Technology.
Micro-fabrication of ceramics: additive manufacturing and conventional technologies
Hassanin, H., Essa, K., Elshaer, A., Imbaby, M. and El-Sayed, T. E. 2021. Micro-fabrication of ceramics: additive manufacturing and conventional technologies. Journal of Advanced Ceramics. 10, pp. 1-27. https://doi.org/10.1007/s40145-020-0422-5
4D Printing of origami structures for minimally invasive surgeries using functional scaffold
Langford, T, Mohammed, A., Essa, K., Elshaer, A. and Hassanin, H. 2020. 4D Printing of origami structures for minimally invasive surgeries using functional scaffold. Applied Sciences. 11 (1), p. 332. https://doi.org/10.3390/app11010332
Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile
Hassanin, H., Mohammed, M., Abdel-Wahab, A. and Essa, K 2020. Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile. Materials.
3D printing of solid oral dosage forms: numerous challenges with unique opportunities
Hassanin, H. 2020. 3D printing of solid oral dosage forms: numerous challenges with unique opportunities. Journal of Pharmaceutical Sciences. https://doi.org/10.1016/j.xphs.2020.08.029
Design optimisation of additively manufactured titanium lattice structures for biomedical implants
El-Sayed, M.A., Essa, K., Ghazy, M. and Hassanin, H. 2020. Design optimisation of additively manufactured titanium lattice structures for biomedical implants. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-020-05982-8
4D Printing of NiTi auxetic structure with improved ballistic performance
Hassanin, H., Abena, A., Elsayed, M.A. and Essa, K. 2020. 4D Printing of NiTi auxetic structure with improved ballistic performance. Micromachines. 11 (8), p. 745. https://doi.org/doi.org/10.3390/mi11080745