Optimising surface roughness and density in titanium fabrication via laser powder bed fusion

Journal article


Hassanin, H., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ataya, S., Ahmed, M. and Essa, K. 2023. Optimising surface roughness and density in titanium fabrication via laser powder bed fusion. Micromachines. 14 (8), p. 1642. https://doi.org/10.3390/mi14081642
AuthorsHassanin, H., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ataya, S., Ahmed, M. and Essa, K.
Abstract

The Ti6Al4V alloy has many advantages, such as being lightweight, formal, and resistant to corrosion. This makes it highly desirable for various applications, especially in the aerospace industry. Laser Powder Bed Fusion (LPBF) is a technique that allows for the production of detailed and unique parts with great flexibility in design. However, there are challenges when it comes to achieving high-quality surfaces and porosity formation in the material, which limits the wider use of LPBF. To tackle these challenges, this study uses statistical techniques called Design of Experiments (DoE) and Analysis of Variance (ANOVA) to investigate and optimise the process parameters of LPBF for making Ti6Al4V components with improved density and surface finish. The parameters examined in this study are laser power, laser scan speed, and hatch space. The optimisation study results show that using specific laser settings, like a laser power of 175 W, a laser scan speed of 1914 mm/s, and a hatch space of 53 µm, produces Ti6Al4V parts with a high relative density of 99.54% and low top and side surface roughness of 2.6 µm and 4.3 µm, respectively. This promising outcome demonstrates the practicality of optimising Ti6Al4V and other metal materials for a wide range of applications, thereby overcoming existing limitations and further expanding the potential of LPBF while minimising inherent process issues.

KeywordsLaser powder bed fusion; Design of experiments; Ti6Al4V; ANOVA; Process parameters
Year2023
JournalMicromachines
Journal citation14 (8), p. 1642
PublisherMDPI
ISSN2072-666X
Digital Object Identifier (DOI)https://doi.org/10.3390/mi14081642
Official URLhttps://www.mdpi.com/2072-666X/14/8/1642
Publication dates
Online20 Aug 2023
Publication process dates
Accepted15 Aug 2023
Deposited05 Oct 2023
Publisher's version
License
File Access Level
Open
Output statusPublished
References

1. Ouassil, S.-E.M.; El Magri, A.; Vanaei, H.R.; Vaudreuil, S. Investigating the effect of printing conditions and annealing on the porosity and tensile behavior of 3D-printed poly-etherimide ma-terial in Z-direction. J. Appl. Polym. Sci. 2023, 140, e53353.
2. Gatto, M.L.; Santoni, A.; Santecchia, E.; Spigarelli, S.; Fiori, F.; Mengucci, P.; Cabibbo, M. The Potential of Duplex Stainless Steel Processed by Laser Powder Bed Fusion for Biomedical Appli-cations: A Review. Metals 2023, 13, 949. https://doi.org/10.3390/met13050949.
3. Larini, F.; Casati, R.; Marola, S.; Vedani, M. Microstructural Evolution of a High-Strength Zr-Ti-Modified 2139 Aluminum Alloy for Laser Powder Bed Fusion. Metals 2023, 13, 924. https://doi.org/10.3390/met13050924.
4. Gatto, A.; Cappelletti, C.; Defanti, S.; Fabbri, F. The Corrosion Behaviour of Additively Manu-factured AlSi10Mg Parts Compared to Traditional Al Alloys. Metals 2023, 13, 913. https://doi.org/10.3390/met13050913.
5. Theeda, S.; Jagdale, S.H.; Ravichander, B.B.; Kumar, G. Optimization of Process Parameters in Laser Powder Bed Fusion of SS 316L Parts Using Artificial Neural Networks. Metals 2023, 13, 842. https://doi.org/10.3390/met13050842.
6. Dejene, N.D.; Lemu, H.G. Current Status and Challenges of Powder Bed Fusion-Based Metal Ad-ditive Manufacturing: Literature Review. Metals 2023, 13, 424. https://doi.org/10.3390/met13020424.
7. Rehman, A.U.; Ullah, A.; Liu, T.; Rehman, R.U.; Salamci, M.U. Additive manufacturing of Al2O3 ceramics with MgO/SiC contents by laser powder bed fusion process. Front. Chem. 2023, 11, 1034473.
8. Liu, C.K.C.A.; Leong, K.F. Properties of Test Coupons Fabricated by Selective Laser Melting. Key Eng. Mater. 2010, 447–448, 780–784.
9. Mulhi, A.; Dehgahi, S.; Waghmare, P.; Qureshi, A.J. Process Parameter Optimization of 2507 Super Duplex Stainless Steel Additively Manufactured by the Laser Powder Bed Fusion Technique. Metals 2023, 13, 725. https://doi.org/10.3390/met13040725.
10. Xue, M.; Chen, X.; Ji, X.; Xie, X.; Chao, Q.; Fan, G. Effect of Particle Size Distribution on the Printing Quality and Tensile Properties of Ti-6Al-4V Alloy Produced by LPBF Process. Metals 2023, 13, 604. https://doi.org/10.3390/met13030604.
11. Luo, Y.; Wang, M.; Zhu, J.; Tu, J.; Jiao, S. Microstructure and Corrosion Resistance of Ti6Al4V Manufactured by Laser Powder Bed Fusion. Metals 2023, 13, 496. https://doi.org/10.3390/met13030496.
12. Strano, G.; Hao, L.; Everson, R.M.; Evans, K.E. Surface roughness analysis, modelling and pre-diction in selective laser melting. J. Mater. Process. Technol. 2013, 213, 589–597.
13. Mumtaz, K.; Hopkinson, N. Top surface and side roughness of Inconel 625 parts processed using selective laser melting. Rapid Prototyp. J. 2009, 15, 96–103. https://doi.org/10.1108/13552540910943397.
14. Alamri, N.M.H.; Packianather, M.; Bigot, S. Predicting the porosity in selective laser melting parts using hybrid regression convolutional neural network. Appl. Sci. 2022, 12, 12571. https://doi.org/10.3390/app122412571.
15. Gong, H.; Rafi, K.; Starr, T.; Stucker, B. The effects of processing parameters on defect regularity in Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting. In 2013 Interna-tional Solid Freeform Fabrication Symposium; University of Texas at Austin: Austin, TX, USA, 2013.
16. Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M.; Berto, F.; du Plessis, A. Metal additive manufacturing in aerospace: A review. Mater. Des. 2021, 209, 110008. https://doi.org/10.1016/j.matdes.2021.110008.
17. Zhao, N.; Parthasarathy, M.; Patil, S.; Coates, D.; Myers, K.; Zhu, H.; Li, W. Direct additive man-ufacturing of metal parts for automotive applications. J. Manuf. Syst. 2023, 68, 368–375. https://doi.org/10.1016/j.jmsy.2023.04.008.
18. Hassanin, H.; Al-Kinani, A.; Elshaer, A.; Elena, P.; Elsayed, M.A.; Essa, K. Stainless Steel with tailored porosity using canister-free hot isostatic pressing for improved osseointegration implants. J. Mater. Chem. B. 2017, 5, 9384–9394.
19. El-Sayed, M.A.; Essa, K.; Ghazy, M.; Hassanin, H. Design optimisation of additively manufactured titanium lattice structures for biomedical implants. Int. J. Adv. Manuf. Technol. 2020, 110, 2257–2268.
20. Bittredge, O.; Hassanin, H.; El-Sayed, M.A.; Eldessouky, H.M.; Alsaleh, N.A.; Alrasheedi, N.H.; Essa, K.; Ahmadein, M. Fabrication and Optimisation of Ti-6Al-4V Lattice-Structured Total Shoulder Implants Using Laser Additive Manufacturing. Materials 2022, 15, 3095. https://doi.org/10.3390/ma15093095.
21. Song, B.; Dong, S.; Zhang, B.; Liao, H.; Coddet, C. Effects of processing parameters on micro-structure and mechanical property of selective laser melted Ti6Al4V. Mater. Des. 2012, 35, 120–125. https://doi.org/10.1016/j.matdes.2011.09.051.
22. Yasa, E.; Deckers, J.; Kruth, J.P. The investigation of the influence of laser re‐melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyp. J. 2011, 17, 312–327. https://doi.org/10.1108/13552541111156450.
23. Attar, H.; Bönisch, M.; Calin, M.; Zhang, L.-C.; Scudino, S.; Eckert, J.J.A.M. Selective laser melting of in situ titanium–titanium boride composites: Processing. Microstruct. Mech. Prop. 2014, 76, 13–22.
24. Sing, S.L.; Wiria, F.E.; Yeong, W.Y. Selective laser melting of lattice structures: A statistical ap-proach to manufacturability and mechanical behavior. Robot. Comput. Manuf. 2018, 49, 170–180. https://doi.org/10.1016/j.rcim.2017.06.006.
25. Hader, R.; Park, S.H. Slope-rotatable central composite designs. Technometrics 1978, 20, 413–417.
26. Elsayed, M.; Ghazy, M.; Youssef, Y.; Essa, K. Optimization of SLM process parameters for Ti6Al4V medical implants. Rapid Prototyp. J. 2018, 25, 433–447. https://doi.org/10.1108/rpj-05-2018-0112.
27. El Magri, A.; El Mabrouk, K.; Vaudreuil, S.; Touhami, M. Experimental investigation and optimi-sation of printing parameters of 3D printed polyphenylene sulfide through response surface methodology. J. Appl. Polym. Sci. 2020, 138, 49625.
28. Hassanin, H.; Alkendi, Y.; Elsayed, M.; Essa, K.; Zweiri, Y. Controlling the properties of additively manufactured cellular structures using machine learning approaches. Adv. Eng. Mater. 2020, 22, 201901338. https://doi.org/10.1002/adem.201901338.
29. Thijs, L.; Verhaeghe, F.; Craeghs, T.; Humbeeck, J.V.; Kruth, J.-P. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010, 58, 3303–3312.
30. Hofmann Group. Hofmann Innovation Group Website—Concept Laser. 2012. Available online: http://www.hofmann-innovation.com/en/technologies/direct-cusing-manu... (accessed on 14 August 2015).
31. Bai, S.; Perevoshchikova, N.; Sha, Y.; Wu, X. The Effects of Selective Laser Melting Process Pa-rameters on Relative Density of the AlSi10Mg Parts and Suitable Procedures of the Archimedes Method. Appl. Sci. 2019, 9, 583. https://doi.org/10.3390/app9030583.
32. Pawlus, P.; Śmieszek, M. The influence of stylus flight on change of surface topography parameters. Precis. Eng. 2005, 29, 272–280. https://doi.org/10.1016/j.precisioneng.2004.11.004.
33. Podulka, P.; Macek, W.; Branco, R.; Nejad, R.M. Reduction in Errors in Roughness Evaluation with an Accurate Definition of the S-L Surface. Materials 2023, 16, 1865. https://doi.org/10.3390/ma16051865.
34. Vorburger, T.V.; Rhee, H.-G.; Renegar, T.B.; Song, J.-F.; Zheng, A. Comparison of optical and stylus methods for measurement of surface texture. Int. J. Adv. Manuf. Technol. 2007, 33, 110–118. https://doi.org/10.1007/s00170-007-0953-8.
35. Carter, L.N.; Essa, K.; Attallah, M.M. Optimisation of selective laser melting for a high temperature Ni-superalloy. Rapid Prototyp. J. 2015, 21, 423–432. https://doi.org/10.1108/rpj-06-2013-0063.
36. Jamshidi, P.; Aristizabal, M.; Kong, W.; Villapun, V.; Cox, S.; Grover, L.; Attallah, M. Selective Laser Melting of Ti-6Al-4V: The Impact of Post-processing on the Tensile, Fatigue and Biological Properties for Medical Implant Applications. Materials 2020, 13, 2813.
37. Read, N.; Wang, W.; Essa, K.; Attallah, M.M. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Mater. Des. 2015, 65, 417–424. https://doi.org/10.1016/j.matdes.2014.09.044.
38. Morgan, R.; Sutcliffe, C.J.; O'Neill, W. Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives. J. Mater. Sci. 2004, 39, 1195–1205. https://doi.org/10.1023/b:jmsc.0000013875.62536.fa.
39. Wang, D.; Jiale, L.; Xiongmian, W.; Dong, L. Study on Surface Roughness Improvement of Selec-tive Laser Melted Ti6Al4V Alloy. Crystals 2023, 13, 306.
40. Kruth, J.P.; Froyen, L.; Van Vaerenbergh, J.; Mercelis, P.; Rombouts, M.; Lauwers, B. Selective laser melting of iron-based powder. J. Mater. Process. Technol. 2004, 149, 616–622.
41. Snehashis, P.; Gorazd, L.; Vanja, K.; Drstvensek, I. Evolution of metallurgical properties of Ti-6Al-4V alloy fabricated in different energy densities in the Selective Laser Melting technique. J. Manuf. Process. 2018, 35, 538–546.
42. Snehashis, P.; Gorazd, L.; Radovan, H.; Viktoria, R.; Tomaz, B.; Vanja, K.; Drstvensek, I. As-fabricated surface morphologies of Ti-6Al-4 V samples fabricated by different laser processing parameters in Selective Laser Melting. Addit. Manuf. 2020, 33, 101147.
43. Palmeri, D.; Buffa, G.; Getano, P.; Livan, F. Sample building orientation effect on porosity and mechanical properties in Selective Laser Melting of Ti6Al4V titanium alloy. Mater. Sci. Eng. A 2021, 830, 142306.
44. Olakanmi, E.O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al—Mg, and Al—Si powders: Effect of processing conditions and powder properties. J. Mater. Process. Technol. 2013, 213, 1387–1405.
45. Sun, K.; Peng, W.; Yang, L.; Fang, L.J.M. Effect of SLM processing parameters on microstructures and mechanical properties of Al0.5CoCrFeNi high entropy

Permalink -

https://repository.canterbury.ac.uk/item/95z54/optimising-surface-roughness-and-density-in-titanium-fabrication-via-laser-powder-bed-fusion

Download files


Publisher's version
micromachines-14-01642.pdf
License: CC BY 4.0
File access level: Open

  • 17
    total views
  • 5
    total downloads
  • 0
    views this month
  • 1
    downloads this month

Export as

Related outputs

Contactless single point incremental forming: Experimental and numerical simulation
Almadani, M., Guner, A., Hassanin, H., De Lisi, Michele. and Essa, K. 2023. Contactless single point incremental forming: Experimental and numerical simulation. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-023-12401-1
Hot-air contactless single-point incremental forming
Almadani, M., Guner, A., Hassanin, H. and Essa, K. 2023. Hot-air contactless single-point incremental forming. Journal of Manufacturing and Materials Processing. 7 (5), p. 179. https://doi.org/10.3390/jmmp7050179
Hybrid finite element–smoothed particle hydrodynamics modelling for optimizing cutting parameters in CFRP composites
Abena, A., Ataya, S., Hassanin, H., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ahmed, M. and Essa, K. 2023. Hybrid finite element–smoothed particle hydrodynamics modelling for optimizing cutting parameters in CFRP composites. Polymers. 15 (13), p. 2789. https://doi.org/10.3390/polym15132789
Embracing sustainable farming: Unleashing the circular economy potential of second-life EV batteries in agricultural applications
Al-Alawi, M., Cugley, J. and Hassanin, H. 2023. Embracing sustainable farming: Unleashing the circular economy potential of second-life EV batteries in agricultural applications.
Entrained defects and mechanical properties of aluminium castings
El-Sayed, M., Essa, K. and Hassanin, H. 2023. Entrained defects and mechanical properties of aluminium castings.
Review on engineering of bone scaffolds using conventional and additive manufacturing technologies
Mohammed, A., Jiménez, A., Bidare, P., Elshaer, A., Memić, A., Hassanin, H. and Essa, K. 2023. Review on engineering of bone scaffolds using conventional and additive manufacturing technologies. 3D Printing and Additive Manufacturing. https://doi.org/10.1089/3dp.2022.0360
Preparation of polylactic acid/calcium peroxide compo-site filaments for fused deposition modelling
Mohammed, A., Kovacev , N., Elshaer, A., Melaibari, A., Iqbal, J., Hassanin, H., Essa, K. and Memić, A. 2023. Preparation of polylactic acid/calcium peroxide compo-site filaments for fused deposition modelling. Polymers. 15 (9), p. 2229. https://doi.org/10.3390/polym15092229
Non-destructive disassembly of interference fit under wear conditions for sustainable remanufacturing
Yeung, H., Ataya, S., Hassanin, H., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ahmed, M. and Essa, K. 2023. Non-destructive disassembly of interference fit under wear conditions for sustainable remanufacturing. Machines. 11 (5), p. 538. https://doi.org/10.3390/machines11050538
Fabrication and characterization of oxygen-generating polylactic acid/calcium peroxide composite filaments for bone scaffolds
Mohammed, A., Saeed, A., Elshaer, A., Melaibari, A., Memić, A., Hassanin, H. and Essa, K. 2023. Fabrication and characterization of oxygen-generating polylactic acid/calcium peroxide composite filaments for bone scaffolds. Pharmaceuticals. 16 (4), p. 627. https://doi.org/10.3390/ph16040627
Using second-life batteries and solar power to help farms become energy efficient.
Al-Alawi, M., Cugley, J. and Hassanin, H. 2023. Using second-life batteries and solar power to help farms become energy efficient. Canterbury Christ Church University.
Chip formation and orthogonal cutting optimisation of unidirectional carbon fibre composites
Hassanin, H., Abena, A., Soo, L., Ataya, S., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ahmed, M. and Essa, K. 2023. Chip formation and orthogonal cutting optimisation of unidirectional carbon fibre composites. Polymers. 15 (8), p. 1897. https://doi.org/10.3390/polym15081897
Fabrication and Optimisation of Ti-6Al-4V Lattice-Structured Total Shoulder Implants Using Laser Additive Manufacturing
Bittredge, Oliver, Hassanin, H., El-Sayed, M., Eldessouky, Hossam Mohamed, A. Alsaleh, N., Alrasheedi, Nashmi H., Essa, K. and Ahmadein, M. 2022. Fabrication and Optimisation of Ti-6Al-4V Lattice-Structured Total Shoulder Implants Using Laser Additive Manufacturing. Materials (Basel, Switzerland). 15 (9), p. e3095. https://doi.org/10.3390/ma15093095
Influence of Bifilm Defects Generated during Mould Filling on the Tensile Properties of Al−Si−Mg Cast Alloys
El-Sayed, M., Essa, K. and Hassanin, H. 2022. Influence of Bifilm Defects Generated during Mould Filling on the Tensile Properties of Al−Si−Mg Cast Alloys. Metals. 12 (1), p. e160. https://doi.org/10.3390/met12010160
Elastomer-based visuotactile sensor for normality of robotic manufacturing systems
Hassanin, H., Zaid, I., Halwani, M., Ayyad, A., Imam, A., Almaskari, F. and Zweiri, Y. 2022. Elastomer-based visuotactile sensor for normality of robotic manufacturing systems. Polymers. 14 (23), p. 5097. https://doi.org/10.3390/polym14235097
Techno-economic feasibility of retired electric-vehicle batteries repurpose/reuse in second-life applications: A systematic review
Hassanin, H., Al-Alawi, M. and Cugley, J. 2022. Techno-economic feasibility of retired electric-vehicle batteries repurpose/reuse in second-life applications: A systematic review. Energy and Climate Change. 3 (100086). https://doi.org/10.1016/j.egycc.2022.100086
Planning, operation, and design of market-based virtual power plant considering uncertainty
Hassanin, H., Ullah, Z., Arshad, Cugley, J. and Al-Alawi, M. 2022. Planning, operation, and design of market-based virtual power plant considering uncertainty. Energies. 19 (15), p. 7290. https://doi.org/10.3390/en15197290
The epistemic insight digest: Issue : Autumn 2022
Gordon, A., Shalet, D., Simpson, S., Hassanin, H., Lawson, F., Lawson, M., Litchfield, A., Thomas, C., Canetta, E., Manley, K. and Choong, C. Shalet, D. (ed.) 2022. The epistemic insight digest: Issue : Autumn 2022. Canterbury Canterbury Christ Church University.
Modeling, optimization, and analysis of a virtual power plant demand response mechanism for the internal electricity market considering the uncertainty of renewable energy sources
Ullah, Z., Arshad and Hassanin, H. 2022. Modeling, optimization, and analysis of a virtual power plant demand response mechanism for the internal electricity market considering the uncertainty of renewable energy sources. Energies. 15 (14), p. 5296. https://doi.org/doi.org/10.3390/en15145296
Interdisciplinary engineering education - essential for the 21st century
Gordon, A., Simpson, S. and Hassanin, H. 2022. Interdisciplinary engineering education - essential for the 21st century.
Multipoint forming using hole-type rubber punch
Hassanin, H., Tolipov, A., El-Sayed, M., Eldessouky, H., A. Alsaleh, N., Alfozan, A., Essa, K. and Ahmadein, M. 2022. Multipoint forming using hole-type rubber punch. Metals. 12 (3), p. 491. https://doi.org/10.3390/met12030491
Multistage Tool Path Optimisation of Single-Point Incremental Forming Process
Yan, Zhou, Hassanin, H., El-Sayed, M., Eldessouky, Hossam Mohamed, Djuansjah, Joy Rizki Pangestu, A. Alsaleh, N., Essa, K. and Ahmadein, M. 2021. Multistage Tool Path Optimisation of Single-Point Incremental Forming Process. Materials (Basel, Switzerland). 14 (22), p. e6794. https://doi.org/10.3390/ma14226794
Effect of runner thickness and hydrogen content on the mechanical properties of A356 alloy castings
El-Sayed, M., Essa, K. and Hassanin, H. 2021. Effect of runner thickness and hydrogen content on the mechanical properties of A356 alloy castings . International Journal of Metalcasting. https://doi.org/10.1007/s40962-021-00753-x
Parts design and process optimization
Hassanin, Hany, Bidare, Prveen, Zweiri, Yahya and Essa, Khamis 2021. Parts design and process optimization. in: Salunkhe, S., Hussein, H. and Davim, J. (ed.) Applications of Artificial Intelligence in Additive Manufacturing USA IGI Global. pp. 25-49
Micro-additive manufacturing technologies of three-dimensional MEMS
Hassanin, H., Sheikholeslami, G., Pooya, S. and Ishaq, R. 2021. Micro-additive manufacturing technologies of three-dimensional MEMS . Advanced Engineering Materials. https://doi.org/10.1002/adem.202100422
Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications
Fan , W., Chen, Y., Li, J., Sun, Y., Feng, F., Hassanin, H. and Sareh, P. 2021. Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications. Structures. 33, pp. 3954-3963. https://doi.org/10.1016/j.istruc.2021.06.110
Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: A review
Bidare, P., Jiménez, A., Hassanin, H. and Essa, K. 2021. Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: A review. Advances in Manufacturing. https://doi.org/10.1007/s40436-021-00365-y
Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approaches
Hassanin, H., Zweiri, Y., Finet, L., Essa, K., Qiu, C. and Attallah, M. 2021. Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approaches. Materials. 14 (8), p. 2056. https://doi.org/10.3390/ma14082056
3DP printing of oral solid formulations: a systematic review
Brambilla, C., Okafor-Muo, O., Hassanin, H. and ElShaer, A. 2021. 3DP printing of oral solid formulations: a systematic review. Pharmaceutics. 13 (3), p. 358. https://doi.org/10.3390/pharmaceutics13030358
Powder-based laser hybrid additive manufacturing of metals: A review
Hassanin, H. 2021. Powder-based laser hybrid additive manufacturing of metals: A review. The International Journal of Advanced Manufacturing Technology.
Micro-fabrication of ceramics: additive manufacturing and conventional technologies
Hassanin, H., Essa, K., Elshaer, A., Imbaby, M. and El-Sayed, T. E. 2021. Micro-fabrication of ceramics: additive manufacturing and conventional technologies. Journal of Advanced Ceramics. 10, pp. 1-27. https://doi.org/10.1007/s40145-020-0422-5
4D Printing of origami structures for minimally invasive surgeries using functional scaffold
Langford, T, Mohammed, A., Essa, K., Elshaer, A. and Hassanin, H. 2020. 4D Printing of origami structures for minimally invasive surgeries using functional scaffold. Applied Sciences. 11 (1), p. 332. https://doi.org/10.3390/app11010332
Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile
Hassanin, H., Mohammed, M., Abdel-Wahab, A. and Essa, K 2020. Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile. Materials.
3D printing of solid oral dosage forms: numerous challenges with unique opportunities
Hassanin, H. 2020. 3D printing of solid oral dosage forms: numerous challenges with unique opportunities. Journal of Pharmaceutical Sciences. https://doi.org/10.1016/j.xphs.2020.08.029
Design optimisation of additively manufactured titanium lattice structures for biomedical implants
El-Sayed, M.A., Essa, K., Ghazy, M. and Hassanin, H. 2020. Design optimisation of additively manufactured titanium lattice structures for biomedical implants. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-020-05982-8
4D Printing of NiTi auxetic structure with improved ballistic performance
Hassanin, H., Abena, A., Elsayed, M.A. and Essa, K. 2020. 4D Printing of NiTi auxetic structure with improved ballistic performance. Micromachines. 11 (8), p. 745. https://doi.org/doi.org/10.3390/mi11080745