Modeling, optimization, and analysis of a virtual power plant demand response mechanism for the internal electricity market considering the uncertainty of renewable energy sources

Journal article


Ullah, Z., Arshad and Hassanin, H. 2022. Modeling, optimization, and analysis of a virtual power plant demand response mechanism for the internal electricity market considering the uncertainty of renewable energy sources. Energies. 15 (14), p. 5296. https://doi.org/doi.org/10.3390/en15145296
AuthorsUllah, Z., Arshad and Hassanin, H.
Abstract

The penetration of renewable energy sources (RESs) in the electrical power system has increased significantly over the past years due to increasing global concern about climate change. However, integrating RESs into the power market is highly problematic. The output of RESs such as wind turbines (WTs) and photovoltaics (PVs) is highly uncertain. Their correlation with load demand is not always guaranteed, which compromises system reliability. Distributed energy resources (DERs), especially demand response (DR) programs and energy storage systems (ESSs), are possible options to overcome these operational challenges under the virtual power plant (VPP) setting.

This study investigates the impact of using a DR program and battery energy storage system (BESS) on the VPP’s internal electricity market, and also cost-minimization analysis from a utility viewpoint. Three different constrained optimal power flow (OPF) problems are solved such as base case, DR case, and BESS case to determine total incurred costs, locational marginal prices (LMPs), and generator commitments. A scenario tree approach is used to model the uncertainties associated with WTs, PVs, and load demand. The proposed model is investigated on a 14-bus distribution system. The simulation results obtained demonstrate a favorable impact of DR and a BESS on renewable operational challenges.

Keywords Renewable energy sources; Demand response; Energy storage; Electricity market; Uncertainty modeling; Locational marginal prices; Modeling; Optimization
Year2022
JournalEnergies
Journal citation15 (14), p. 5296
PublisherMDPI
ISSN1996-1073
Digital Object Identifier (DOI)https://doi.org/doi.org/10.3390/en15145296
Official URLhttps://www.mdpi.com/1996-1073/15/14/5296/htm
Publication dates
Print21 Jul 2022
Publication process dates
Accepted20 Jul 2022
Deposited25 Jul 2022
Accepted author manuscript
File Access Level
Open
Publisher's version
License
File Access Level
Open
Output statusPublished
References

Wang, Z.; Gao, J.; Zhao, R.; Wang, J.; Li, G. Optimal bidding strategy for virtual power plants considering the feasible region of vehicle-to-grid. Energy Convers. Econ. 2020, 1, 238–250. [Google Scholar] [CrossRef]
Pourghaderi, N.; Fotuhi-Firuzabad, M.; Kabirifar, M.; Moeini-Aghtaie, M.; Lehtonen, M.; Wang, F. Reliability-based optimal bidding strategy of a technical virtual power plant. IEEE Syst. J. 2021, 16, 1080–1091. [Google Scholar] [CrossRef]
Ullah, Z.; Mirjat, N.H. Virtual power plant: State of the art providing energy flexibility to local distribution grids. E3S Web Conf. 2021, 231, 01002. [Google Scholar] [CrossRef]
Wang, H.; Jia, Y.; Lai, C.S.; Li, K. Optimal Virtual Power Plant Operational Regime under Reserve Uncertainty. IEEE Trans. Smart Grid. 2022, 13, 2973–2985. [Google Scholar] [CrossRef]
Lyu, X.; Xu, Z.; Zhang, J.; Wang, N.; Xu, W. An Hour-ahead Cooperation Model of Virtual Power Plants Considering Uncertainties of Wind/Photovoltaic Power. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 8764–8769. [Google Scholar] [CrossRef]
Ullah, Z.; Mokryani, G.; Campean, F.; Hu, Y.F. Comprehensive review of VPPs planning, operation and scheduling considering the uncertainties related to renewable energy sources. IEET Energy Syst. Integr. 2019, 1, 147–157. [Google Scholar] [CrossRef]
Yu, S.; Fang, F.; Liu, Y.; Liu, J. Uncertainties of virtual power plant: Problems and countermeasures. Appl. Energy 2019, 239, 454–470. [Google Scholar] [CrossRef]
Lu, X.; Cheng, L. Day-Ahead Scheduling for Renewable Energy Generation Systems considering Concentrating Solar Power Plants. Math. Probl. Eng. 2021, 2021, 9488222. [Google Scholar] [CrossRef]
Naval, N.; Yusta, J.M. Virtual power plant models and electricity markets-A review. Renew. Sustain. Energy Rev. 2021, 149, 111393. [Google Scholar] [CrossRef]
Ullah, Z.; Mirjat, N.H. Modeling the Energy Cooperation between Regionally Interconnected Aggregators using Bilateral Agreements. IOP Conf. Ser. Earth Environ. Sci. 2022, 1008, 012016. [Google Scholar] [CrossRef]
Zhang, J. The Concept, Project and Current Status of Virtual Power Plant: A Review. J. Phys. Conf. Ser. 2022, 2152, 012059. [Google Scholar] [CrossRef]
Bai, H.; Miao, S.; Ran, X.; Ye, C. Optimal dispatch strategy of a virtual power plant containing battery switch stations in a unified electricity market. Energies 2015, 8, 2268–2289. [Google Scholar] [CrossRef]
Mazzi, N.; Trivella, A.; Morales, J.M. Enabling active/passive electricity trading in dual-price balancing markets. IEEE Trans. Power Syst. 2018, 34, 1980–1990. [Google Scholar] [CrossRef]
Ullah, Z.; Mirjat, N.H.; Baseer, M. Optimisation and Management of Virtual Power Plants Energy Mix Trading Model. Int. J. Renew. Energy Dev. 2022, 11, 83–94. [Google Scholar] [CrossRef]
Baseer, M.; Mokryani, G.; Zubo, R.H.; Cox, S. Planning of HMG with high penetration of renewable energy sources. IET Renew. Power Gener. 2019, 13, 1724–1730. [Google Scholar] [CrossRef]
Hu, J.; Jiang, C.; Liu, Y. Short-term bidding strategy for a price-maker virtual power plant based on interval optimization. Energies 2019, 12, 3662. [Google Scholar] [CrossRef]
Khaloie, H.; Abdollahi, A.; Shafie-Khah, M.; Siano, P.; Nojavan, S.; Anvari-Moghaddam, A.; Catalão, J.P. Co-optimized bidding strategy of an integrated wind-thermal-photovoltaic system in deregulated electricity market under uncertainties. J. Clean. Prod. 2020, 242, 118434. [Google Scholar] [CrossRef]
Pasetti, M.; Rinaldi, S.; Manerba, D. A virtual power plant architecture for the demand-side management of smart prosumers. Appl. Sci. 2018, 8, 432. [Google Scholar] [CrossRef]
Ullah, Z.; Mirjat, N.H. Modelling and analysis of virtual power plants interactive operational characteristics in distribution systems. Energy Convers. Economics 2021, 3, 11–19. [Google Scholar] [CrossRef]
Liu, J.; Tang, H.; Xiang, Y.; Liu, J.; Zhang, L. Multi-stage market transaction method with participation of virtual power plants. Electr. Power Constr. 2017, 38, 137–144. [Google Scholar]
Ullah, Z.; Baseer, M. Operational planning and design of market-based virtual power plant with high penetration of renewable energy sources. Int. J. Renew. Energy Dev. 2022, 11, 620–629. [Google Scholar] [CrossRef]
Zubo, R.H.; Mokryani, G. Active distribution network operation: A market-based approach. IEEE Syst. J. 2019, 14, 1405–1416. [Google Scholar] [CrossRef]
Athari, M.H.; Wang, Z. Modeling the uncertainties in renewable generation and smart grid loads for the study of the grid vulnerability. In Proceedings of the 2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 6–9 September 2016; pp. 1–5. [Google Scholar] [CrossRef]
Salkuti, S.R. Day-ahead thermal and renewable power generation scheduling considering uncertainty. Renew. Energy 2019, 131, 956–965. [Google Scholar] [CrossRef]
Yu, S.; Wei, Z.; Sun, G.Q.; Sun, Y.H.; Wang, D. A bidding model for a virtual power plant considering uncertainties. Autom. Electr. Power Syst. 2014, 38, 43–49. [Google Scholar] [CrossRef]
Zubo, R.H.; Mokryani, G.; Abd-Alhameed, R. Optimal operation of distribution networks with high penetration of wind and solar power within a joint active and reactive distribution market environment. Appl. Energy 2018, 220, 713–722. [Google Scholar] [CrossRef]
Ahmed, S.A.; Mahammed, H.O. A statistical analysis of wind power density based on the Weibull and Ralyeigh models of “Penjwen Region” Sulaimani/Iraq. Jordan J. Mech. Ind. Eng. 2012, 6, 135–140. [Google Scholar] [CrossRef]
Reddy, S.S.; Abhyankar, A.R.; Bijwe, P.R. Market clearing for a wind-thermal power system incorporating wind generation and load forecast uncertainties. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8. [Google Scholar]
Montoya-Bueno, S.; Muñoz-Hernández, J.I.; Contreras, J. Uncertainty management of renewable distributed generation. J. Clean. Prod. 2016, 138, 103–118. [Google Scholar] [CrossRef]
Reddy, S.S.; Bijwe, P.R.; Abhyankar, A.R. Joint energy and spinning reserve market clearing incorporating wind power and load forecast uncertainties. IEEE Syst. J. 2013, 9, 152–164. [Google Scholar] [CrossRef]
Reddy, S.S.; Bijwe, P.R.; Abhyankar, A.R. Optimal posturing in day-ahead market clearing for uncertainties considering anticipated real-time adjustment costs. IEEE Syst. J. 2013, 9, 177–190. [Google Scholar] [CrossRef]
Li, Y.; Zio, E. Uncertainty analysis of the adequacy assessment model of a distributed generation system. Renew. Energy 2012, 41, 235–244. [Google Scholar] [CrossRef]
Baringo, L.; Rahimiyan, M. Virtual Power Plants and Electricity Markets; e-Book; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
Soroudi, A. Power System Optimization Modeling in GAMS; Springer: Berlin/Heidelberg, Germany, 2017; Volume 78. [Google Scholar]
Fourer, R.; Gay, D.M.; Kernighan, B.W. A modeling language for mathematical programming. Manag. Sci. 1990, 36, 519–554. [Google Scholar] [CrossRef]

Permalink -

https://repository.canterbury.ac.uk/item/918w2/modeling-optimization-and-analysis-of-a-virtual-power-plant-demand-response-mechanism-for-the-internal-electricity-market-considering-the-uncertainty-of-renewable-energy-sources

Download files


Publisher's version
energies-15-05296-v2.pdf
License: CC BY 4.0
File access level: Open

  • 13
    total views
  • 1
    total downloads
  • 7
    views this month
  • 0
    downloads this month

Export as

Related outputs

Interdisciplinary engineering education - essential for the 21st century
Gordon, A., Simpson, S. and Hassanin, H. 2022. Interdisciplinary engineering education - essential for the 21st century.
Fabrication and optimisation of Ti-6Al-4V lattice-structured total shoulder implants using laser additive manufacturing
Hassanin, H., Bittredge, O., El-Sayed, M., Eldessouky, H., A. Alsaleh, N., Alrasheedi, N., Essa, K. and Ahmadein, M. 2022. Fabrication and optimisation of Ti-6Al-4V lattice-structured total shoulder implants using laser additive manufacturing. Materials. 15 (9), p. 3095. https://doi.org/10.3390/ma15093095
Multipoint forming using hole-type rubber punch
Hassanin, H., Tolipov, A., El-Sayed, M., Eldessouky, H., A. Alsaleh, N., Alfozan, A., Essa, K. and Ahmadein, M. 2022. Multipoint forming using hole-type rubber punch. Metals. 12 (3), p. 491. https://doi.org/10.3390/met12030491
Influence of bifilm defects generated during mould filling on the tensile properties of Al–Si–Mg cast alloys
El-Sayed, M., Essa, K. and Hassanin, H. 2022. Influence of bifilm defects generated during mould filling on the tensile properties of Al–Si–Mg cast alloys. Metals. https://doi.org/10.3390/met12010160
Effect of runner thickness and hydrogen content on the mechanical properties of A356 alloy castings
El-Sayed, M., Essa, K. and Hassanin, H. 2021. Effect of runner thickness and hydrogen content on the mechanical properties of A356 alloy castings . International Journal of Metalcasting. https://doi.org/10.1007/s40962-021-00753-x
Parts design and process optimization
Hassanin, Hany, Bidare, Prveen, Zweiri, Yahya and Essa, Khamis 2021. Parts design and process optimization. in: Salunkhe, S., Hussein, H. and Davim, J. (ed.) Applications of Artificial Intelligence in Additive Manufacturing USA IGI Global. pp. 25-49
Multi stages toolpath optimisation of single point incremental forming process
Hassanin, H., Yan, Z, El-Sayed, M., Eldessouky, H., Djuansjah, J., Alsaleh, N., Essa, K. and Ahmadein, M. 2021. Multi stages toolpath optimisation of single point incremental forming process. Materials. 14 (22), p. 6794. https://doi.org/10.3390/ma14226794
Micro-additive manufacturing technologies of three-dimensional MEMS
Hassanin, H., Sheikholeslami, G., Pooya, S. and Ishaq, R. 2021. Micro-additive manufacturing technologies of three-dimensional MEMS . Advanced Engineering Materials. https://doi.org/10.1002/adem.202100422
Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications
Fan , W., Chen, Y., Li, J., Sun, Y., Feng, F., Hassanin, H. and Sareh, P. 2021. Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications. Structures. 33, pp. 3954-3963. https://doi.org/10.1016/j.istruc.2021.06.110
Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: A review
Bidare, P., Jiménez, A., Hassanin, H. and Essa, K. 2021. Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: A review. Advances in Manufacturing. https://doi.org/10.1007/s40436-021-00365-y
Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approaches
Hassanin, H., Zweiri, Y., Finet, L., Essa, K., Qiu, C. and Attallah, M. 2021. Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approaches. Materials. 14 (8), p. 2056. https://doi.org/10.3390/ma14082056
3DP printing of oral solid formulations: a systematic review
Brambilla, C., Okafor-Muo, O., Hassanin, H. and ElShaer, A. 2021. 3DP printing of oral solid formulations: a systematic review. Pharmaceutics. 13 (3), p. 358. https://doi.org/10.3390/pharmaceutics13030358
Powder-based laser hybrid additive manufacturing of metals: A review
Hassanin, H. 2021. Powder-based laser hybrid additive manufacturing of metals: A review. The International Journal of Advanced Manufacturing Technology.
Micro-fabrication of ceramics: additive manufacturing and conventional technologies
Hassanin, H., Essa, K., Elshaer, A., Imbaby, M. and El-Sayed, T. E. 2021. Micro-fabrication of ceramics: additive manufacturing and conventional technologies. Journal of Advanced Ceramics. 10, pp. 1-27. https://doi.org/10.1007/s40145-020-0422-5
4D Printing of origami structures for minimally invasive surgeries using functional scaffold
Langford, T, Mohammed, A., Essa, K., Elshaer, A. and Hassanin, H. 2020. 4D Printing of origami structures for minimally invasive surgeries using functional scaffold. Applied Sciences. 11 (1), p. 332. https://doi.org/10.3390/app11010332
Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile
Hassanin, H., Mohammed, M., Abdel-Wahab, A. and Essa, K 2020. Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile. Materials.
3D printing of solid oral dosage forms: numerous challenges with unique opportunities
Hassanin, H. 2020. 3D printing of solid oral dosage forms: numerous challenges with unique opportunities. Journal of Pharmaceutical Sciences. https://doi.org/10.1016/j.xphs.2020.08.029
Design optimisation of additively manufactured titanium lattice structures for biomedical implants
El-Sayed, M.A., Essa, K., Ghazy, M. and Hassanin, H. 2020. Design optimisation of additively manufactured titanium lattice structures for biomedical implants. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-020-05982-8
4D Printing of NiTi auxetic structure with improved ballistic performance
Hassanin, H., Abena, A., Elsayed, M.A. and Essa, K. 2020. 4D Printing of NiTi auxetic structure with improved ballistic performance. Micromachines. 11 (8), p. 745. https://doi.org/doi.org/10.3390/mi11080745