References | 1. Nascimento, V. D. C.; Conti, A. C. F.; Cardoso, M. A.; Valarelli, D. P.; Almeida-Pedrin, R. R. Impact of orthodontic treatment on self-esteem and quality of life of adult patients requiring oral rehabilitation. Angle Orthod. 2016, 86(5), 839–845. DOI: 10.2319/072215-496.1. 2. Fadel, M. A. V.; Santos, B. Z.; Antoniazzi, R. P.; Koerich, L.; Bosco, V. L.; Locks, A. Prevalence of malocclusion in public school students in the mixed dentition phase and its association with early loss of deciduous teeth. Dent. Press J. Orthod. 2022, 27(4), e2220120. DOI: 10.1590/2177-6709.27.4.e2220120.oar. 3. Wijk, P.; Bouma, J.; Waas, M. A. J.; Oort, R.; Rutten, F. F. H. The Cost of Dental Implants as Compared to That of Conventional Strategies. Int. J. Oral Maxillofac. Implants 1998, 13, 546–553. 4. Dawod, N.; Miculescu, M.; Antoniac, I. V.; Miculescu, F.; Agop-Forna, D. Metal-Ceramic Compatibility in Dental Restorations According to the Metallic Component Manufacturing Procedure. Materials (Basel) 2023, 16(16), 5556. DOI: 10.3390/ma16165556. 5. Nistor, L.; Grădinaru, M.; Rîcă, R.; Mărășescu, P.; Stan, M.; Manolea, H.; Ionescu, A.; Moraru, I. Zirconia Use in Dentistry - Manufacturing and Properties. Curr. Health Sci. J. 2019, 45(1), 28–35. DOI: 10.12865/CHSJ.45.01.03. 6. Santoliquido, O.; Colombo, P.; Ortona, A. Additive Manufacturing of ceramic components by Digital Light Processing: A comparison between the ‘bottom-up’ and the ‘top-down’ approaches. J. Eur. Ceram. Soc. 2019. DOI: 10.1016/j.jeurceramsoc.2019.01.044. 7. Siddique, T.; Sami, I.; Nisar, M.; Naeem, M.; Karim, A.; Usman, M. Low Cost 3D Printing for Rapid Prototyping and its Application. 1–5. DOI: 10.1109/INTELLECT47034.2019.8954983. 8. Dadkhah, M.; Tulliani, J.-M.; Saboori, A.; Iuliano, L. Additive Manufacturing of Ceramics: Advances, Challenges, and Outlook. J. Eur. Ceram. Soc. 2023. DOI: 10.1016/j.jeurceramsoc.2023.07.033. 9. Bhatia, A.; Sehgal, A. K. Additive manufacturing materials, methods and applications: A review. Mater. Today: Proc. 2021, 81. DOI: 10.1016/j.matpr.2021.04.379. 10. Krujatz, F.; Lode, A.; Seidel, J.; Bley, T.; Gelinsky, M.; Steingroewer, J. Additive Biotech-Chances, challenges, and recent applications of Additive Manufacturing technologies in biotechnology. N. Biotechnol. 2017, 39(Pt B), 222–231. DOI: 10.1016/j.nbt.2017.09.001. 11. Deckers, J.; Vleugels, J.; Kruth, J. Additive Manufacturing of Ceramics: A Review. J. Ceram. Sci. Technol. 2014, 5, 245–260. https://doi.org/10.4416/JCST2014-00032. 12. Villa, A.; Gianchandani, P.; Baino, F. Sustainable Approaches for the Additive Manufacturing of Ceramic Materials. Ceramics 2024, 7, 291–309. DOI: 10.3390/ceramics7010019. 13. Panhalkar, N.; Paul, R.; Anand, S. Increasing Part Accuracy in Additive Manufacturing Processes Using a k-d Tree Based Clustered Adaptive Layering. J. Manuf. Sci. Eng. 2014, 136, 061017. DOI: 10.1115/1.4028586. 14. Zakeri, S.; Vippola, M.; Levänen, E. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography. Addit. Manuf. 2020, 35, 101177. DOI: 10.1016/j.addma.2020.101177. 15. Wang, J. C.; Dommati, H. Fabrication of zirconia ceramic parts by using solvent based slurry stereolithography and sintering. Int. J. Adv. Manuf. Technol. 2018, 98, 1537–1546. DOI: 10.1007/s00170-018-2349-3 16. Khoda, B. Computer-Aided Design of Additive Manufacturing Components. 2017. 10.1201/9781315151441-2.. 17. Lakhdar, Y.; Tuck, C.; Binner, J.; Terry, A.; Goodridge, R. Additive manufacturing of advanced ceramic materials. Prog. Mater. Sci. 2021, 116, 100736. DOI: 10.1016/j.pmatsci.2020.100736. 18. Mitteramskogler, G.; Gmeiner, R.; Felzmann, R.; Gruber, S.; Hofstetter, C.; Stampfl, J.; Ebert, J.; Wachter, W.; Laubersheimer, J. Light curing strategies for lithography-based Additive Manufacturing of customized ceramics. Addit. Manuf. 2014, 1, 110–118. DOI: 10.1016/j.addma.2014.08.003. 19. Komissarenko, D. A.; Sokolov, P. S.; Evstigneeva, A. D.; Shmeleva, I. A.; Dosovitsky, A. E. Rheological and curing behavior of acrylate-based suspensions for the DLP 3D printing of complex zirconia parts. Materials (Basel) 2018, 11, 2350. DOI: 10.3390/ma11122350. 20. Griffith, M., & Halloran, J. (1994). Ultraviolet curable ceramic suspensions for stereolithography of ceramics. American Society of Mechanical Engineers, Production Engineering Division (Publication) PED, 68, 529-534. 21. Tarı̀, G.; Ferreira, J. M. F. Influence of solid loading on drying-Shrinkage behaviour of slip cast bodies. J. Eur. Ceram. Soc. 1998, 18(5), 487–493. DOI: 10.1016/S0955-2219(97)00161-1. 22. Xia, X.; Duan, G. Effect of solid loading on properties of zirconia ceramic by direct ink writing. Mater. Res. Express 2021, 8. DOI: 10.1088/2053-1591/abd866. 23. Komissarenko, D. A.; Sokolov, P. S.; Evstigneeva, A. D.; Shmeleva, I. A.; Dosovitsky, A. E. Rheological and curing behavior of acrylate-based suspensions for the DLP 3D printing of complex zirconia parts. Materials (Basel) 2018, 11, 2350. DOI: 10.3390/ma11122350. 24. Zhang, K.; Xie, C.; Wang, G.; He, R.; Ding, G.; Wang, M.; Dai, D.; Fang, D. High Solid Loading, Low Viscosity Photosensitive Al2O3 Slurry for Stereolithography Based Additive Manufacturing. Ceram. Int. 2019, 45, 203–208. https://doi.org/10.1016/j.ceramint.2018.09.152 25. Wu, Y.; Liu, J.; Kang, L.; Tian, J.; Zhang, X.; Hu, J.; Huang, Y.; Liu, F.; Wang, H.; Wu, Z. An Overview of 3D Printed Metal Implants in Orthopedic Applications: Present and Future Perspectives. Heliyon 2023, 9 (7), e17718. https://doi.org/10.1016/j.heliyon.2023.e17718 26. Hassanin, H.; Jiang, K. Fabrication and characterization of stabilised zirconia micro parts via slip casting and soft moulding. Scripta Materialia 2013, 69(6), 433–436. DOI: 10.1016/j.scriptamat.2013.05.004. 27. Hassanin, H.; Jiang, K. Optimized process for the fabrication of zirconia micro parts. Microelectronic Engineering 2010, 87(5–8), 1617–1619. DOI: 10.1016/j.mee.2009.10.037. 28. Hassanin, H.; Jiang, K. Net shape manufacturing of ceramic micro parts with tailored graded layers. J. Micromech. Microeng. 2013, 24(1), 015018. DOI: 10.1088/0960-1317/24/1/015018. 29. Ghayoor, A.; Khan, A. S.; Aslam, N. Calcium silicate: A smart scaffold for bone tissue engineering. SN Applied Sciences 2020, 2 (1), 1–9. https://doi.org/10.1007/s43188-019-00013-1. 30. Zhang, H.; Jiao, C.; Liu, Z.; He, Z.; Ge, M.; Tian, Z.; Wang, C.; Wei, Z.; Shen, L.; Liang, H. 3D-Printed Composite, Calcium Silicate Ceramic Doped with CaSO4·2H2O: Degradation Performance and Biocompatibility. J Mech Behav Biomed Mater 2021, 121, 104642. https://doi.org/10.1016/j.jmbbm.2021.104642. 31. Yang, S.; Wu, P. Calcium Silicate Improved Bioactivity and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Scaffolds. Polymers 2017, 9, 175. https://doi.org/10.3390/polym9050175. 32. Kermani, F.; Rezayan, A. H. Three-dimensional printing of calcium silicate scaffolds. Iranian Journal of Science and Technology, Transactions A: Science 2018, 42 (1), 235–240. https://doi.org/10.1007/s13758-018-0183-y. 33. Ding, S. J.; Chu, Y. H.; Chen, P. T. Mechanical Biocompatibility, Osteogenic Activity, and Antibacterial Efficacy of Calcium Silicate-Zirconia Biocomposites. ACS Omega 2021, 6 (10), 7106–7118. https://doi.org/10.1021/acsomega.1c00097. 34. Yu, J.; Yang, J.; Huang, Y. The Transformation Mechanism from Suspension to Green Body and the Development of Colloidal Forming. Ceramics International 2011, 37, 1435–1451. 35. Su, G.; Zhang, Y.; Jin, C.; Zhang, Q.; Lu, J.; Liu, Z.; Wang, Q.; Zhang, X.; Ma, J. 3D Printed Zirconia Used as Dental Materials: A Critical Review. J Biol Eng 2023, 17, 78. https://doi.org/10.1186/s13036-023-00396-y. 36. Schoenberg, S.; Green, D.; Messing, G. Effect of Green Density on the Thermomechanical Properties of a Ceramic During Sintering. J Am Ceram Soc 2006, 89, 2448–2452. https://doi.org/10.1111/j.1551-2916.2006.01097.x. 37. Varghese, G.; Moral, M.; Castro-Garcia, M.; López-López, J.; Marín-Rueda, J.; Yagüe-Alcaraz, V.; Afonso, L.; Ruiz-Morales, J. C.; Canales-Vázquez, J. Fabrication and Characterisation of Ceramics via Low-Cost DLP 3D Printing. Boletín de la Sociedad Española de Cerámica y Vidrio 2017, 57, https://doi.org/10.1016/j.bsecv.2017.09.004. 38. Komissarenko, D. A.; Sokolov, P. S.; Evstigneeva, A. D.; Shmeleva, I. A.; Dosovitsky, A. E. Rheological and Curing Behavior of Acrylate-Based Suspensions for the DLP 3D Printing of Complex Zirconia Parts. Materials 2018, 11, 2350. https://doi.org/10.3390/ma11122350. 39. Bennett, J. Measuring UV Curing Parameters of Commercial Photopolymers Used in Additive Manufacturing. Addit. Manuf. 2017, 18, 203–212. https://doi.org/10.1016/j.addma.2017.10.009. 40. Nawafleh, N. A., Mack, F., Evans, J., Mackay, J., & Hatamleh, M. M. (2013). Accuracy and reliability of methods to measure marginal adaptation of crowns and FDPs: a literature review. Journal of Prosthodontics, 22(5), 419-428. https://doi.org/10.1111/jopr.12006 41. Cristache, C. M.; Gurbanescu, S. Accuracy Evaluation of a Stereolithographic Surgical Template for Dental Implant Insertion Using 3D Superimposition Protocol. Int. J. Dent. 2017, 2017, 4292081. https://doi.org/10.1155/2017/4292081. 42. Liu, G.; Yan, C.; Zhang, K.; Jin, H.; He, R. Effect of Solid Loading on the Property of Al2O3 Ceramics in Stereolithographic Additive Manufacturing. J. Inorg. Mater. 2021, 37, 636. https://doi.org/10.15541/jim20210636. 43. Khanlar, L. N.; Salazar Rios, A.; Tahmaseb, A.; Zandinejad, A. Additive Manufacturing of Zirconia Ceramic and Its Application in Clinical Dentistry: A Review. Dent J (Basel) 2021, 9, 104. https://doi.org/10.3390/dj9090104. 44. Kochar, S. P.; Reche, A.; Paul, P. The Etiology and Management of Dental Implant Failure: A Review. Cureus 2022, 14, e30455. https://doi.org/10.7759/cureus.30455. 45. Jati, A. S.; Furquim, L. Z.; Consolaro, A. Gingival Recession: Its Causes and Types, and the Importance of Orthodontic Treatment. Dent. Press J. Orthod. 2016, 21, 18–29. https://doi.org/10.1590/2177-6709.21.3.018-029.oin. 46. Nugala, B.; Kumar, B. S.; Sahitya, S.; Krishna, P. M. Biologic Width and Its Importance in Periodontal and Restorative Dentistry. J. Conserv. Dent. 2012, 15, 12–17. https://doi.org/10.4103/0972-0707.92599. 47. Zhang, K.; Xie, C.; Wang, G.; He, R.; Ding, G.; Wang, M.; Dai, D.; Fang, D. High Solid Loading, Low Viscosity Photosensitive Al2O3 Slurry for Stereolithography Based Additive Manufacturing. Ceram. Int. 2019, 45, 203–208. https://doi.org/10.1016/j.ceramint.2018.09.152. 48. Cai, P.; Guo, L.; Wang, H.; Li, J.; Li, J.; Qiu, Y.; Zhang, Q.; Lue, Q. Effects of Slurry Mixing Methods and Solid Loading on 3D Printed Silica Glass Parts Based on DLP Stereolithography. Ceram. Int. 2020, 46. https://doi.org/10.1016/j.ceramint.2020.03.260. 49. Tomasik, P.; Schilling, C. H.; Jankowiak, R.; Kim, J. C. The Role of Organic Dispersants in Aqueous Alumina Suspensions. J. Eur. Ceram. Soc. 2003, 23, 913–919. https://doi.org/10.1016/s0955-2219(02)00204-2. 50. Min, D. Effect of Fluorspar and Alumina on the Viscous Flow of Calcium Silicate Melts Containing MgO. J. Non-Cryst. Solids 2004, 337, 150–156. https://doi.org/10.1016/j.jnoncrysol.2004.03.109. 51. Schumacher, K.; White, J.; Downey, J. Viscosities in the Calcium–Silicate Slag System in the Range of 1798 K to 1973 K (1525 °C to 1700 °C). Metall. Mater. Trans. B 2015, 46B, 119–124. https://doi.org/10.1007/s11663-014-0173-1. 52. Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Second Edition; Springer: New York, NY, 2015. https://doi.org/10.1007/978-1-4939-2113-3. 53. Sim, J. H.; Koo, B. K.; Jung, M.; Kim, D. S. Study on Debinding and Sintering Processes for Ceramics Fabricated Using Digital Light Processing (DLP) 3D Printing. Processes 2022, 10, 2467. https://doi.org/10.3390/pr10112467. 54. Zhang, L.; Huang, J.; Xiao, Z.; He, Y.; Liu, K.; He, B.; Xiang, B.; Zhai, J.; Kong, L.B. Effects of Debinding Condition on Microstructure and Densification of Alumina Ceramics Shaped with Photopolymerization-Based Additive Manufacturing Technology. Ceram. Int. 2022, 48. https://doi.org/10.1016/j.ceramint.2022.01.288. 55. Okulov, I. V.; Weissmüller, J.; Markmann, J. Dealloying-Based Interpenetrating-Phase Nanocomposites Matching the Elastic Behavior of Human Bone. Sci. Rep. 2017, 7 (1), 20. https://doi.org/10.1038/s41598-017-00048-4. 56. Abdel-Hady Gepreel, M.; Niinomi, M. Biocompatibility of Ti-Alloys for Long-Term Implantation. J. Mech. Behav. Biomed. Mater. 2013, 20, 407–415. https://doi.org/10.1016/j.jmbbm.2012.11.014. 57. Poumarat, G.; Squire, P. Comparison of Mechanical Properties of Human, Bovine Bone and a New Processed Bone Xenograft. Biomaterials 1993, 14 (5), 337–340. https://doi.org/10.1016/0142-9612(93)90051-3. |
---|