Hybrid finite element–smoothed particle hydrodynamics modelling for optimizing cutting parameters in CFRP composites

Journal article


Abena, A., Ataya, S., Hassanin, H., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ahmed, M. and Essa, K. 2023. Hybrid finite element–smoothed particle hydrodynamics modelling for optimizing cutting parameters in CFRP composites. Polymers. 15 (13), p. 2789. https://doi.org/10.3390/polym15132789
AuthorsAbena, A., Ataya, S., Hassanin, H., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ahmed, M. and Essa, K.
Abstract

Carbon-fibre-reinforced plastic (CFRP) is increasingly being used in various applications including aerospace, automotive, wind energy, sports, and robotics, which makes the precision modelling of its machining operations a critical research area. However, the classic finite element modelling (FEM) approach has limitations in capturing the complexity of machining, particularly with regard to the interaction between the fibre–matrix interface and the cutting edge. To overcome this limitation, a hybrid approach that integrates smoothed particle hydrodynamics (SPHs) with FEM was developed and tested in this study. The hybrid FEM-SPH approach was compared with the classic FEM approach and validated with experimental measurements that took into account the cutting tool’s round edge. The results showed that the hybrid FEM-SPH approach outperformed the classic FEM approach in predicting the thrust force and bounce back of CFRP machining due to the integrated cohesive model and the element conversion after failure in the developed approach. The accurate representation of the fibre–matrix interface in the FEM-SPH approach resulted in predicting precise chip formation in terms of direction and morphology. Nonetheless, the computing time of the FEM-SPH approach is higher than the classic FEM. The developed hybrid FEM-SPH model is promising for improving the accuracy of simulation in machining processes, combining the benefits of both techniques.

KeywordsFinite element modelling; Smoothed particle hydrodynamics; Orthogonal cutting; Chip formation
Year2023
JournalPolymers
Journal citation15 (13), p. 2789
PublisherMDPI
ISSN2073-4360
Digital Object Identifier (DOI)https://doi.org/10.3390/polym15132789
Official URLhttps://www.mdpi.com/2073-4360/15/13/2789
Publication dates
Print23 Jun 2023
Publication process dates
Accepted15 Jun 2023
Deposited28 Jun 2023
Publisher's version
License
Output statusPublished
References

1. Ahmad, H.; Markina, A.A.; Porotnikov, M.V.; Ahmad, F. A review of carbon fiber materials in automotive industry. IOP Con-Ference Ser. Mater. Sci. Eng. 2020, 971, 032011.
2. Caggiano, A. Machining of fibre reinforced plastic composite materials. Materials 2018, 11, 442.
3. Galatas, A.; Hassanin, H.; Zweiri, Y.; Seneviratne, L. Additive Manufactured Sandwich Composite/ABS Parts for Unmanned Aerial Vehicle Applications. Polymers 2018, 10, 1262.
4. Teti, R. Machining of Composite Materials. CIRP Ann. 2002, 51, 611–634.
5. Poór, D.I.; Geier, N.; Pereszlai, C.; Xu, J. A critical review of the drilling of CFRP composites: Burr formation, characterisation and challenges. Compos. Part B Eng. 2021, 223, 109155.
6. Rawal, S.; Sidpara, A.M.; Paul, J. A review on micro machining of polymer composites. J. Manuf. Process. 2022, 77, 87–113.
7. Alarifi, I.M. A Review on Factors Affecting Machinability and Properties of Fiber-Reinforced Polymer Composites. J. Nat. Fibers 2023, 20, 2154304.
8. Shetty, N.; Shahabaz, S.M.; Sharma, S.S.; Shetty, S.D. A review on finite element method for machining of composite materials. Compos. Struct. 2017, 176, 790–802.
9. Takeyama, H.; Iijima, N. Machinability of Glassfiber Reinforced Plastics and Application of Ultrasonic Machining. CIRP Ann. 1988, 37, 93–96.
10. Zhang, L.C.; Zhang, H.J.; Wang, X.M. A force prediction model for cutting unidirectional fibre-reinforced plastics. Mach. Sci. Technol. 2001, 5, 293–305.
11. Cantero, J.L.; Santiuste, C.; Marín, N.; Soldani, X.; Miguélez, H. 2D and 3D approaches to simulation of metal and composite cutting. AIP Conf. Proc. 2012, 1431, 651–659.
12. Santiuste, C.; Olmedo, A.; Soldani, X.; Miguélez, H. Delamination prediction in orthogonal machining of carbon long fi-ber-reinforced polymer composites. J. Reinf. Plast. Compos. 2012, 31, 875–885.
13. Santiuste, C.; Soldani, X.; Miguélez, M.H. Machining FEM model of long fiber composites for aeronautical components. Compos. Struct. 2010, 92, 691–698.
14. Nayak, D.; Singh, I.; Bhatnagar, N.; Mahajan, P. An Analysis of Machining Induced Damages in FRP Composites—A Micro-mechanics Finite Element Approach. AIP Conf. Proc. 2004, 712, 327–331.
15. Palani, V.; Bahr, B. Finite Element Simulation of 3D Drilling in Unidirectional CFRP Composite. Master’s Thesis, Wichita State University, Wichita, KS, USA, 2006.
16. Isbilir, O.; Ghassemieh, E. Numerical investigation of the effects of drill geometry on drilling induced delamination of carbon fiber reinforced composites. Compos. Struct. 2013, 105, 126–133.
17. Phadnis, V.A.; Roy, A.; Silberschmidt, V.V. A Finite Element Model of Ultrasonically Assisted Drilling in Carbon/Epoxy Com-posites. Procedia CIRP 2013, 8, 141–146.
18. PHale; Ng, E.G. 3D Finite Element Model on Drilling of CFRP with Numerical Optimization and Experimental Validation. Materials 2021, 14, 1161.
19. Orifici, A.; Herszberg, I.; Thomson, R.S. Review of methodologies for composite material modelling incorporating failure. Compos. Struct. 2008, 86, 194–210.
20. Altenbach, H.; Tushtev, K. A New Static Failure Criterion for Isotropic Polymers. Mech. Compos. Mater. 2001, 37, 475–482.
21. Rao, G.V.G.; Mahajan, P.; Bhatnagar, N. Micro-mechanical modeling of machining of FRP composites—Cutting force analysis. Compos. Sci. Technol. 2007, 67, 579–593.
22. Rao, G.V.G.; Mahajan, P.; Bhatnagar, N. Machining of UD-GFRP composites chip formation mechanism. Compos. Sci. Technol. 2007, 67, 2271–2281.
23. Rentsch, R.; Pecat, O.; Brinksmeier, E. Macro and micro process modeling of the cutting of carbon fiber reinforced plastics using FEM. Procedia Eng. 2011, 10, 1823–1828.
24. Abena, A.; Soo, S.; Essa, K. A Finite Element Simulation for Orthogonal Cutting of UD-CFRP Incorporating a Novel Fibre-matrix Interface Model. Procedia CIRP 2015, 31, 539–544.
25. Beklemysheva, K.; Vasyukov, A.; Ermakov, A.; Petrov I. Numerical simulation of the failure of composite materials by using the grid-characteristic method. Mathematical Models and Computer Simulations. 2016, 8, 557–567.
26. Hu, Y.; Xia, Z.; Ellyin, F. The Failure Behavior of an Epoxy Resin Subject to Multiaxial Loading. Pipelines 2006, 2006, 1–8.
27. Zhou, Y.; Wang, Y.; Xia, Y.; Jeelani, S. Tensile behavior of carbon fiber bundles at different strain rates. Mater. Lett. 2010, 64, 246–248.
28. Zhou, Y.; Wang, Y.; Jeelani, S.; Xia, Y. Experimental Study on Tensile Behavior of Carbon Fiber and Carbon Fiber Reinforced Aluminum at Different Strain Rate. Appl. Compos. Mater. 2007, 14, 17–31.
29. Honjo, K. Fracture toughness of PAN-based carbon fibers estimated from strength–mirror size relation. Carbon 2003, 41, 979–984.
30. Oya, N.; Johnson, D. Longitudinal compressive behaviour and microstructure of PAN-based carbon fibres. Carbon 2001, 39, 635–645.
31. Ueda, M.; Saito, W.; Imahori, R.; Kanazawa, D.; Jeong, T.-K. Longitudinal direct compression test of a single carbon fiber in a scanning electron microscope. Compos. Part A Appl. Sci. Manuf. 2014, 67, 96–101.
32. Dandekar, C.R.; Shin, Y.C. Multiphase Finite Element Modeling of Machining Unidirectional Composites: Prediction of Debonding and Fiber Damage. J. Manuf. Sci. Eng. -Trans. Asme 2008, 130, 051016.
33. Phadnis, V.A.; Makhdum, F.; Roy, A.; Silberschmidt, V.V. Drilling in carbon/epoxy composites: Experimental investigations and finite element implementation. Compos. Part A Appl. Sci. Manuf. 2013, 47, 41–51.
34. Feito, N.; López-Puente, J.; Santiuste, C.; Miguélez, M.H. Numerical prediction of delamination in CFRP drilling. Compos. Struct. 2014, 108, 677–683.
35. Shinde, A.S.; Siva, I.; Munde, Y.; Sultan, M.T.H.; Hua, L.S.; Shahar, F.S. Numerical modelling of drilling of fiber reinforced polymer matrix composite: A review. J. Mater. Res. Technol. 2022, 20, 3561–3578.
36. Camanho, P.; Dávila, C. Mixed-mode dechoesion finite elements for the simulation of delamination in composite materials. NTRS 2002, 1, NASA/TM-2002-211737.
37. May, M. Numerical evaluation of cohesive zone models for modeling impact induced delamination in composite materials. Compos. Struct. 2015, 133, 16–21.
38. Gingold, R.A.; Monaghan, J.J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 1977, 181, 375–389.
39. Zahedi, A.; Li, S.; Roy, A.; Babitsky, V.; Silberschmidt, V.V. Application of Smooth-Particle Hydrodynamics in Metal Machining. J. Phys. Conf. Ser. 2012, 382, 012017.
40. Spreng, F.; Eberhard, P. Machining Process Simulations with Smoothed Particle Hydrodynamics. Procedia CIRP 2015, 31, 94–99.
41. Madaj, M.; Píška, M. On the SPH Orthogonal Cutting Simulation of A2024-T351 Alloy. Procedia CIRP 2013, 8, 152–157.
42. Zetterberg, M. A critical overview of machining simulations in ABAQUS. Master's thesis, KTH Royal Institute Of Technology, Stockholm, 283, 2014.
43. Limido, J.; Espinosa, C.; Salaün, M.; Mabru, C.; Chieragatti, R. High speed machining modelling: SPH method capabilities. In Proceedings of the 4th Smoothed Particle Hydrodynamics European Research Interest Community (SPHERIC) Workshop, Nantes, France, 27–29 May 2009.
44. Villumsen, M.; Fauerholdt, T.G. Simulation of Metal Cutting using Smooth Particle Hydrodynamics. LS-DYNA Anwend. 2008, C-III, 17–36.
45. Avachat, C.S.; Cherukuri, H.P. A Parametric Study of the Modeling of Orthogonal Machining Using the Smoothed Particle Hydrodynamics Method. Am. Soc. Mech. Eng. 2015, 57571, V014T06A005.
46. Xi, Y.; Bermingham, M.; Wang, G.; Dargusch, M. SPH/FE modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloy. Comput. Mater. Sci. 2014, 84, 188–197.
47. Llanos, I.; Villar, J.; Urresti, I.; Arrazola, P. Finite element modeling of oblique machining using an arbitrary Lagrangian–Eulerian formulation. Mach. Sci. Technol. 2009, 13, 385–406.
48. Calzada, K.; Kapoor, S.; DeVor, R.; Samuel, J.; Srivastava, A. Modeling and interpretation of fiber orientation-based failure mechanisms in machining of carbon fiber-reinforced polymer composites. J. Manuf. Process. 2012, 14, 141–149.
49. Littell, J.D.; Ruggeri, C.R.; Goldberg, R.K.; Roberts, G.D.; Arnold, W.A.; Binienda, W.K. Measurement of Epoxy Resin Tension, Compression, and Shear Stress–Strain Curves over a Wide Range of Strain Rates Using Small Test Specimens. J. Aerosp. Eng. 2008, 21, 162–173.
50. Zitoune, R.; Collombet, F.; Lachaud, F.; Piquet, R.; Pasquet, P. Experiment–calculation comparison of the cutting conditions rep-resentative of the long fiber composite drilling phase. Compos. Sci. Technol. 2005, 65, 455–466.
51. Bhatnagar, N.; Ramakrishnan, N.; Naik, N.K.; Komanduri, R. On the machining of fiber reinforced plastic (FRP) composite laminates. Int. J. Mach. Tools Manuf. 1995, 35, 701–716.
52. Li, H.; Qin, X.; He, G.; Jin, Y.; Sun, D.; Price, M. Investigation of chip formation and fracture toughness in orthogonal cutting of UD-CFRP. Int. J. Adv. Manuf. Technol. 2016, 82, 1079–1088.
53. Wei, Y.; An, Q.; Cai, X.; Chen, M.; Ming, W. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Car-bon-Fiber/Epoxy Prepreg Sheets. Materials 2015, 8, 6738–6751.
54. Kahwash, F.; Shyha, I.; Maheri, A. Machining Unidirectional Composites using Single-Point Tools: Analysis of Cutting Forces, Chip Formation and Surface Integrity. Procedia Eng. 2015, 132, 569–576.
55. Abena, A.; Soo, S.; Essa, K. Modelling the orthogonal cutting of UD-CFRP composites: Development of a novel cohesive zone model. Compos. Struct. 2017, 168, 65–83.
56. Abena, A.; Soo, S.L.; Ataya, S.; Hassanin, H.; El-Sayed, M.A.; Ahmadein, M.; Alsaleh, N.A.; Ahmed, M.M.Z.; Essa, K. Chip Formation and Orthogonal Cutting Optimisation of Unidirectional Carbon Fibre Composites. Polymers 2023, 15, 1897.
57. Abena, A.; Essa, K. 3D micro-mechanical modelling of orthogonal cutting of UD-CFRP using smoothed particle hydrodynamics and finite element methods. Compos. Struct. 2019, 218, 174.
58. Liu, T.; Qiu, F.; Yang, H.; Liu, S.; Jiang, Q.; Zhang, L. Exploring the potential of FSW-ed Al–Zn–Mg–Cu-based composite reinforced by trace in-situ nanoparticles in manufacturing workpiece with customizable size and high mechanical performances. Compos. Part B Eng. 2023, 250, 110425.
59. Yang, H.; Yan, Y.; Liu, T.; Dong, B.; Chen, L.; Shu, S.; Qiu, F.; Jiang, Q.; Zhang, L. Unprecedented enhancement in strength-plasticity synergy of (TiC+Al6MoTi+Mo)/Al cermet by multiple length-scale microstructure stimulated synergistic deformation. Compos. Part B Eng. 2021, 225, 109265.
60. Dong, B.; Li, Q.; Wang, Z.; Liu, T.; Yang, H.; Shu, S.; Chen, L.; Qiu, F.; Jiang, Q.; Zhang, L. Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution. Compos. Part B Eng. 2021, 217, 108912.
61. Yang, H.; Wang, Z.; Chen, L.; Shu, S.; Qiu, F.; Zhang, L. Interface formation and bonding control in high-volume-fraction (TiC+TiB2)/Al composites and their roles in enhancing properties. Compos. Part B Eng. 2021, 209, 108605.

Permalink -

https://repository.canterbury.ac.uk/item/94y50/hybrid-finite-element-smoothed-particle-hydrodynamics-modelling-for-optimizing-cutting-parameters-in-cfrp-composites

Download files


Publisher's version
polymers-15-02789.pdf
License: CC BY 4.0

  • 20
    total views
  • 7
    total downloads
  • 4
    views this month
  • 0
    downloads this month

Export as

Related outputs

Designing lightweight 3D-printable bioinspired structures for enhanced compression and energy absorption properties
Harish, A., A. Alsaleh, N., Ahmadein, M., Elfar, A., Djuansjah, J., Hassanin, H., El-Sayed, M. and Essa, K. 2024. Designing lightweight 3D-printable bioinspired structures for enhanced compression and energy absorption properties. Polymers. 16 (6), p. 729. https://doi.org/10.3390/polym16060729
A novel vision-based multi-functional sensor for normality and position measurements in precise robotic manufacturing
Halwani, M., Ayyad, A., AbuAssi, L., Abdulrahman, Y., Almaskari, F., Hassanin, H., Abusafieh, A. and Zweiri, Y. 2024. A novel vision-based multi-functional sensor for normality and position measurements in precise robotic manufacturing. Precision Engineering. 88, pp. 367-381. https://doi.org/10.1016/j.precisioneng.2024.02.015
Optimisation of a novel hot air contactless single incremental point forming of polymers
Almadani, M., Guner, A., Hassanin, H. and Essa, K. 2024. Optimisation of a novel hot air contactless single incremental point forming of polymers. Journal of Manufacturing Processes. 117, pp. 302-314. https://doi.org/10.1016/j.jmapro.2024.02.042
Advancing safety and efficiency in critical infrastructure with a novel SOC estimation for battery storage systems: A focus on second life batteries
Al-Alawi, M., Cugley, J., Jaddoa, A. and Hassanin, H. 2024. Advancing safety and efficiency in critical infrastructure with a novel SOC estimation for battery storage systems: A focus on second life batteries.
Contactless single point incremental forming: Experimental and numerical simulation
Almadani, M., Guner, A., Hassanin, H., De Lisi, Michele. and Essa, K. 2023. Contactless single point incremental forming: Experimental and numerical simulation. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-023-12401-1
Hot-air contactless single-point incremental forming
Almadani, M., Guner, A., Hassanin, H. and Essa, K. 2023. Hot-air contactless single-point incremental forming. Journal of Manufacturing and Materials Processing. 7 (5), p. 179. https://doi.org/10.3390/jmmp7050179
Optimising surface roughness and density in titanium fabrication via laser powder bed fusion
Hassanin, H., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ataya, S., Ahmed, M. and Essa, K. 2023. Optimising surface roughness and density in titanium fabrication via laser powder bed fusion. Micromachines. 14 (8), p. 1642. https://doi.org/10.3390/mi14081642
Embracing sustainable farming: Unleashing the circular economy potential of second-life EV batteries in agricultural applications
Al-Alawi, M., Cugley, J. and Hassanin, H. 2023. Embracing sustainable farming: Unleashing the circular economy potential of second-life EV batteries in agricultural applications.
Entrained defects and mechanical properties of aluminium castings
El-Sayed, M., Essa, K. and Hassanin, H. 2023. Entrained defects and mechanical properties of aluminium castings.
Review on engineering of bone scaffolds using conventional and additive manufacturing technologies
Mohammed, A., Jiménez, A., Bidare, P., Elshaer, A., Memić, A., Hassanin, H. and Essa, K. 2023. Review on engineering of bone scaffolds using conventional and additive manufacturing technologies. 3D Printing and Additive Manufacturing. https://doi.org/10.1089/3dp.2022.0360
Preparation of polylactic acid/calcium peroxide compo-site filaments for fused deposition modelling
Mohammed, A., Kovacev , N., Elshaer, A., Melaibari, A., Iqbal, J., Hassanin, H., Essa, K. and Memić, A. 2023. Preparation of polylactic acid/calcium peroxide compo-site filaments for fused deposition modelling. Polymers. 15 (9), p. 2229. https://doi.org/10.3390/polym15092229
Non-destructive disassembly of interference fit under wear conditions for sustainable remanufacturing
Yeung, H., Ataya, S., Hassanin, H., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ahmed, M. and Essa, K. 2023. Non-destructive disassembly of interference fit under wear conditions for sustainable remanufacturing. Machines. 11 (5), p. 538. https://doi.org/10.3390/machines11050538
Fabrication and characterization of oxygen-generating polylactic acid/calcium peroxide composite filaments for bone scaffolds
Mohammed, A., Saeed, A., Elshaer, A., Melaibari, A., Memić, A., Hassanin, H. and Essa, K. 2023. Fabrication and characterization of oxygen-generating polylactic acid/calcium peroxide composite filaments for bone scaffolds. Pharmaceuticals. 16 (4), p. 627. https://doi.org/10.3390/ph16040627
Using second-life batteries and solar power to help farms become energy efficient.
Al-Alawi, M., Cugley, J. and Hassanin, H. 2023. Using second-life batteries and solar power to help farms become energy efficient. Canterbury Christ Church University.
Chip formation and orthogonal cutting optimisation of unidirectional carbon fibre composites
Hassanin, H., Abena, A., Soo, L., Ataya, S., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ahmed, M. and Essa, K. 2023. Chip formation and orthogonal cutting optimisation of unidirectional carbon fibre composites. Polymers. 15 (8), p. 1897. https://doi.org/10.3390/polym15081897
Fabrication and Optimisation of Ti-6Al-4V Lattice-Structured Total Shoulder Implants Using Laser Additive Manufacturing
Bittredge, Oliver, Hassanin, H., El-Sayed, M., Eldessouky, Hossam Mohamed, A. Alsaleh, N., Alrasheedi, Nashmi H., Essa, K. and Ahmadein, M. 2022. Fabrication and Optimisation of Ti-6Al-4V Lattice-Structured Total Shoulder Implants Using Laser Additive Manufacturing. Materials (Basel, Switzerland). 15 (9), p. e3095. https://doi.org/10.3390/ma15093095
Influence of Bifilm Defects Generated during Mould Filling on the Tensile Properties of Al−Si−Mg Cast Alloys
El-Sayed, M., Essa, K. and Hassanin, H. 2022. Influence of Bifilm Defects Generated during Mould Filling on the Tensile Properties of Al−Si−Mg Cast Alloys. Metals. 12 (1), p. e160. https://doi.org/10.3390/met12010160
Elastomer-based visuotactile sensor for normality of robotic manufacturing systems
Hassanin, H., Zaid, I., Halwani, M., Ayyad, A., Imam, A., Almaskari, F. and Zweiri, Y. 2022. Elastomer-based visuotactile sensor for normality of robotic manufacturing systems. Polymers. 14 (23), p. 5097. https://doi.org/10.3390/polym14235097
Techno-economic feasibility of retired electric-vehicle batteries repurpose/reuse in second-life applications: A systematic review
Hassanin, H., Al-Alawi, M. and Cugley, J. 2022. Techno-economic feasibility of retired electric-vehicle batteries repurpose/reuse in second-life applications: A systematic review. Energy and Climate Change. 3 (100086). https://doi.org/10.1016/j.egycc.2022.100086
Planning, operation, and design of market-based virtual power plant considering uncertainty
Hassanin, H., Ullah, Z., Arshad, Cugley, J. and Al-Alawi, M. 2022. Planning, operation, and design of market-based virtual power plant considering uncertainty. Energies. 19 (15), p. 7290. https://doi.org/10.3390/en15197290
The epistemic insight digest: Issue : Autumn 2022
Gordon, A., Shalet, D., Simpson, S., Hassanin, H., Lawson, F., Lawson, M., Litchfield, A., Thomas, C., Canetta, E., Manley, K. and Choong, C. Shalet, D. (ed.) 2022. The epistemic insight digest: Issue : Autumn 2022. Canterbury Canterbury Christ Church University.
Modeling, optimization, and analysis of a virtual power plant demand response mechanism for the internal electricity market considering the uncertainty of renewable energy sources
Ullah, Z., Arshad and Hassanin, H. 2022. Modeling, optimization, and analysis of a virtual power plant demand response mechanism for the internal electricity market considering the uncertainty of renewable energy sources. Energies. 15 (14), p. 5296. https://doi.org/doi.org/10.3390/en15145296
Interdisciplinary engineering education - essential for the 21st century
Gordon, A., Simpson, S. and Hassanin, H. 2022. Interdisciplinary engineering education - essential for the 21st century.
Multipoint forming using hole-type rubber punch
Hassanin, H., Tolipov, A., El-Sayed, M., Eldessouky, H., A. Alsaleh, N., Alfozan, A., Essa, K. and Ahmadein, M. 2022. Multipoint forming using hole-type rubber punch. Metals. 12 (3), p. 491. https://doi.org/10.3390/met12030491
Multistage Tool Path Optimisation of Single-Point Incremental Forming Process
Yan, Zhou, Hassanin, H., El-Sayed, M., Eldessouky, Hossam Mohamed, Djuansjah, Joy Rizki Pangestu, A. Alsaleh, N., Essa, K. and Ahmadein, M. 2021. Multistage Tool Path Optimisation of Single-Point Incremental Forming Process. Materials (Basel, Switzerland). 14 (22), p. e6794. https://doi.org/10.3390/ma14226794
Effect of runner thickness and hydrogen content on the mechanical properties of A356 alloy castings
El-Sayed, M., Essa, K. and Hassanin, H. 2021. Effect of runner thickness and hydrogen content on the mechanical properties of A356 alloy castings . International Journal of Metalcasting. https://doi.org/10.1007/s40962-021-00753-x
Parts design and process optimization
Hassanin, Hany, Bidare, Prveen, Zweiri, Yahya and Essa, Khamis 2021. Parts design and process optimization. in: Salunkhe, S., Hussein, H. and Davim, J. (ed.) Applications of Artificial Intelligence in Additive Manufacturing USA IGI Global. pp. 25-49
Micro-additive manufacturing technologies of three-dimensional MEMS
Hassanin, H., Sheikholeslami, G., Pooya, S. and Ishaq, R. 2021. Micro-additive manufacturing technologies of three-dimensional MEMS . Advanced Engineering Materials. https://doi.org/10.1002/adem.202100422
Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications
Fan , W., Chen, Y., Li, J., Sun, Y., Feng, F., Hassanin, H. and Sareh, P. 2021. Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications. Structures. 33, pp. 3954-3963. https://doi.org/10.1016/j.istruc.2021.06.110
Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: A review
Bidare, P., Jiménez, A., Hassanin, H. and Essa, K. 2021. Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: A review. Advances in Manufacturing. https://doi.org/10.1007/s40436-021-00365-y
Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approaches
Hassanin, H., Zweiri, Y., Finet, L., Essa, K., Qiu, C. and Attallah, M. 2021. Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approaches. Materials. 14 (8), p. 2056. https://doi.org/10.3390/ma14082056
3DP printing of oral solid formulations: a systematic review
Brambilla, C., Okafor-Muo, O., Hassanin, H. and ElShaer, A. 2021. 3DP printing of oral solid formulations: a systematic review. Pharmaceutics. 13 (3), p. 358. https://doi.org/10.3390/pharmaceutics13030358
Powder-based laser hybrid additive manufacturing of metals: A review
Hassanin, H. 2021. Powder-based laser hybrid additive manufacturing of metals: A review. The International Journal of Advanced Manufacturing Technology.
Micro-fabrication of ceramics: additive manufacturing and conventional technologies
Hassanin, H., Essa, K., Elshaer, A., Imbaby, M. and El-Sayed, T. E. 2021. Micro-fabrication of ceramics: additive manufacturing and conventional technologies. Journal of Advanced Ceramics. 10, pp. 1-27. https://doi.org/10.1007/s40145-020-0422-5
4D Printing of origami structures for minimally invasive surgeries using functional scaffold
Langford, T, Mohammed, A., Essa, K., Elshaer, A. and Hassanin, H. 2020. 4D Printing of origami structures for minimally invasive surgeries using functional scaffold. Applied Sciences. 11 (1), p. 332. https://doi.org/10.3390/app11010332
Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile
Hassanin, H., Mohammed, M., Abdel-Wahab, A. and Essa, K 2020. Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile. Materials.
3D printing of solid oral dosage forms: numerous challenges with unique opportunities
Hassanin, H. 2020. 3D printing of solid oral dosage forms: numerous challenges with unique opportunities. Journal of Pharmaceutical Sciences. https://doi.org/10.1016/j.xphs.2020.08.029
Design optimisation of additively manufactured titanium lattice structures for biomedical implants
El-Sayed, M.A., Essa, K., Ghazy, M. and Hassanin, H. 2020. Design optimisation of additively manufactured titanium lattice structures for biomedical implants. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-020-05982-8
4D Printing of NiTi auxetic structure with improved ballistic performance
Hassanin, H., Abena, A., Elsayed, M.A. and Essa, K. 2020. 4D Printing of NiTi auxetic structure with improved ballistic performance. Micromachines. 11 (8), p. 745. https://doi.org/doi.org/10.3390/mi11080745