Micro-fabrication of ceramics: additive manufacturing and conventional technologies

Journal article

Hassanin, H., Essa, K., Elshaer, A., Imbaby, M. and El-Sayed, T. E. 2021. Micro-fabrication of ceramics: additive manufacturing and conventional technologies. Journal of Advanced Ceramics. 10, pp. 1-27. https://doi.org/10.1007/s40145-020-0422-5
AuthorsHassanin, H., Essa, K., Elshaer, A., Imbaby, M. and El-Sayed, T. E.

Ceramic materials are increasingly used in Micro-electro-mechanical systems (MEMS) as they offer many advantages such as high-temperature resistance, high wear resistance, low density, and favourable mechanical and chemical properties at elevated temperature. However, with the emerging of additive manufacturing, the use of ceramics for functional and structural MEMS raises new opportunities and challenges. This paper provides an extensive review of the manufacturing processes used for ceramic-based MEMS, including additive and conventional manufacturing technologies. The review covers the micro-fabrication techniques of ceramics with the focus on their operating principles, main features, and processed materials. Challenges that need to be addressed in applying additive technologies in MEMS include ceramic printing on wafers, post-processing at the micro-level, resolution, and quality control. The paper also sheds light on the new possibilities of ceramic additive micro-fabrication and their potential applications, which indicates a promising future.

KeywordsMEMS; Micro-fabrication; Ceramics; Micro parts; Additive manufacturing
JournalJournal of Advanced Ceramics
Journal citation10, pp. 1-27
Digital Object Identifier (DOI)https://doi.org/10.1007/s40145-020-0422-5
Official URLhttps://doi.org/10.1007/s40145-020-0422-5
Publication dates
Online18 Jan 2021
Publication process dates
Accepted09 Sep 2020
Deposited14 Sep 2020
Accepted author manuscript
File Access Level
Output statusPublished

[1] K. Essa, F. Modica, M. Imbaby, M.A. El-Sayed, A. ElShaer, K. Jiang, H. Hassanin, Manufacturing of metallic micro-components using hybrid soft lithography and micro-electrical discharge machining, International Journal of Advanced Manufacturing Technology 91(1-4) (2017) 445-452.
[2] R.P. Feynman, There's Plenty of Room at The Bottom, Journal of Microelectromechanical Systems 1(1) (1992) 60-66.
[3] K.E. Petersen, Silicon as a Mechanical Material, Proceedings of the IEEE 70(5) (1982) 420-457.
[4] R.T. Howe, Surface Micromachining for Microsensors and Microactuators, Journal of Vacuum Science & Technology B 6(6) (1988) 1809-1813.
[5] J. Brandner, Microfabrication in Metals, Ceramics and Polymers, Russian Journal of General Chemistry 82(12) (2012) 2025-2033.
[6] R. Maboudian, Surface Processes in MEMS Technology, Surface Science Reports 30(6) (1998) 207-269.
[7] N. Miki, Techniques in the Fabrication of High-Speed Micro-Rotors for MEMS Applications, MEMS/NEMS, Springer, New York, 2006, pp. 335-352.
[8] H. Hassanin, K. Jiang, Functionally graded microceramic components, Microelectronic Engineering 87(5) (2010) 1610-1613.
[9] S. Zhuiykov, Development of ceramic electrochemical sensor based on Bi 2 Ru 2 O 7+ x− RuO 2 sub-micron oxide sensing electrode for water quality monitoring, Ceramics International 36(8) (2010) 2407-2413.
[10] W. Bauer, M. Müller, R. Knitter, P. Börsting, A. Albers, M. Deuchert, V. Schulze, Design and prototyping of a ceramic micro turbine: a case study, Microsystem Technologies 16(4) (2010) 607-615.
[11] K. Bae, D.Y. Jang, H.J. Jung, J.W. Kim, J.-W. Son, J.H. Shim, Micro ceramic fuel cells with multilayered yttrium-doped barium cerate and zirconate thin film electrolytes, Journal of Power Sources 248 (2014) 1163-1169.
[12] R. Zhao, G. Shao, Y. Cao, L. An, C. Xu, Temperature sensor made of polymer-derived ceramics for high-temperature applications, Sensors and Actuators A: Physical 219 (2014) 58-64.
[13] K. Monri, S. Maruo, Three-dimensional ceramic molding based on microstereolithography for the production of piezoelectric energy harvesters, Sensors and Actuators A: Physical 200 (2013) 31-36.
[14] S. Bystrova, R. Luttge, Micromolding for ceramic microneedle arrays, Microelectronic Engineering 88(8) (2011) 1681-1684.
[15] V. Piotter, M.B. Beck, H.-J. Ritzhaupt-Kleissl, A. Ruh, J. Haußelt, Recent developments in micro ceramic injection molding, International Journal of Materials Research 99(10) (2008) 1157-1162.
[16] H. Teterycz, J. Kita, R. Bauer, L.J. Golonka, B.W. Licznerski, K. Nitsch, K. Wiśniewski, New design of an SnO2 gas sensor on low temperature cofiring ceramics, Sensors and Actuators B: Chemical 47(1) (1998) 100-103.
[17] H. Hassanin, K. Jiang, Fabrication of Al2O3/SiC Composite Microcomponents using Non-aqueous Suspension, Advanced Engineering Materials 11(1‐2) (2009) 101-105.
[18] J. Liu, Y. Yang, H. Hassanin, N. Jumbu, S. Deng, Q. Zuo, K. Jiang, Graphene–Alumina Nanocomposites with Improved Mechanical Properties for Biomedical Applications, ACS Applied Materials & Interfaces 8(4) (2016) 2607-2616.
[19] K. Zhang, C. Xie, G. Wang, R. He, G. Ding, M. Wang, D. Dai, D. Fang, High solid loading, low viscosity photosensitive Al2O3 slurry for stereolithography based additive manufacturing, Ceramics International 45(1) (2019) 203-208.
[20] C. Feng, K. Zhang, R. He, G. Ding, M. Xia, X. Jin, C. Xie, Additive manufacturing of hydroxyapatite bioceramic scaffolds: Dispersion, digital light processing, sintering, mechanical properties, and biocompatibility, Journal of Advanced Ceramics 9(3) (2020) 360-373.
[21] L. Yang, X. Zeng, A. Ditta, B. Feng, L. Su, Y. Zhang, Preliminary 3D printing of large inclined-shaped alumina ceramic parts by direct ink writing, Journal of Advanced Ceramics 9(3) (2020) 312-319.
[22] E. Peng, D. Zhang, J. Ding, Ceramic Robocasting: Recent Achievements, Potential, and Future Developments, Advanced Materials 30(47) (2018) 1802404.
[23] J. Kita, A. Dziedzic, L.J. Golonka, A. Bochenek, Properties of laser cut LTCC heaters, Microelectronics Reliability 40(6) (2000) 1005-1010.
[24] F. Rettig, R. Moos, Ceramic meso hot-plates for gas sensors, Sensors and Actuators B: Chemical 103(1) (2004) 91-97.
[25] I.M.O. V.A. Iovdalskiy, I.M. Bleivas, V.M. Ippolitov, Hybrid integrated circuit of gas sensor, in: R. Federation (Ed.) 1996.
[26] A. Suresh, M.J. Mayo, W.D. Porter, C.J. Rawn, Crystallite and Grain‐Size‐Dependent Phase Transformations in Yttria‐Doped Zirconia, Journal of the American Ceramic Society 86(2) (2003) 360-362.
[27] S. Saridag, O. Tak, G. Alniacik, Basic properties and types of zirconia: An overview, World J Stomatol August 20(3) (2013) 40-47.
[28] M. Ghatee, M. Shariat, J. Irvine, Investigation of electrical and mechanical properties of 3YSZ/8YSZ composite electrolytes, Solid State Ionics 180(1) (2009) 57-62.
[29] B. Butz, Yttria-doped zirconia as solid electrolyte for fuel-cell applications, Karlsruher Inst. für Technologie, Karlsruher 2009.
[30] H. Drings, U. Brossmann, H.E. Schaefer, Preparation of crack‐free nano‐crystalline yttria‐stabilized zirconia, Physica Status Solidi (RRL)-Rapid Research Letters 1(1) (2007) R7-R9.
[31] X. Capdevila, J. Folch, A. Calleja, J. Llorens, M. Segarra, F. Espiell, J. Morante, High-density YSZ tapes fabricated via the multi-folding lamination process, Ceramics International 35(3) (2009) 1219-1226.
[32] T. Jardiel, M.E. Sotomayor, B. Levenfeld, A. Várez, Optimization of the Processing of 8‐YSZ Powder by Powder Injection Molding for SOFC Electrolytes, International Journal of Applied Ceramic Technology 5(6) (2008) 574-581.
[33] K.H. Cheah, P.S. Khiew, J.K. Chin, Fabrication of a zirconia MEMS-based microthruster by gel casting on PDMS soft molds, Journal of Micromechanics and Microengineering 22(9) (2012) 095013.
[34] L. Jiang, R. Cheung, A Review of Silicon Carbide Development in MEMS Applications, Int. J. Computational Materials Science and Surface Engineering 2 (2009).
[35] A.A. Vasiliev, A.V. Pisliakov, A.V. Sokolov, N.N. Samotaev, S.A. Soloviev, K. Oblov, V. Guarnieri, L. Lorenzelli, J. Brunelli, A. Maglione, A.S. Lipilin, A. Mozalev, A.V. Legin, Non-silicon MEMS platforms for gas sensors, Sensors and Actuators B: Chemical 224 (2016) 700-713.
[36] H. Hassanin, K. Jiang, Alumina composite suspension preparation for softlithography microfabrication, Microelectronic Engineering 86(4) (2009) 929-932.
[37] M. Schulz, Polymer Derived Ceramics in MEMS/NEMS—a Review on Production Processes and Application, Advances in Applied Ceramics 108 (2009) 454-460.
[38] L. Brigo, J.E.M. Schmidt, A. Gandin, N. Michieli, P. Colombo, G. Brusatin, 3D Nanofabrication of SiOC Ceramic Structures, Advanced Science 5(12) (2018) 1800937.
[39] J. Schmidt, L. Brigo, A. Gandin, M. Schwentenwein, P. Colombo, G. Brusatin, Multiscale ceramic components from preceramic polymers by hybridization of vat polymerization-based technologies, Additive Manufacturing 30 (2019) 100913.
[40] G.L. Smith, J.S. Pulskamp, L.M. Sanchez, D.M. Potrepka, R.M. Proie, T.G. Ivanov, R.Q. Rudy, W.D. Nothwang, S.S. Bedair, C.D. Meyer, R.G. Polcawich, PZT-Based Piezoelectric MEMS Technology, Journal of the American Ceramic Society 95(6) (2012) 1777-1792.
[41] C.M. Gomes, N. Travitzky, P. Greil, A.P.N. Oliveira, D. Hotza, Laminated Object Manufacturing (LOM) of glass ceramics substrates for LTCC applications, Innovative Developments in Design and Manufacturing - Advanced Research in Virtual and Rapid Prototyping, 2010, pp. 239-244.
[42] Y.J. Yoon, J. Choi, J.W. Lim, H.T. Kim, J. Kim, Y.S. Choi, J.H. Lee, J.H. Kim, Microfluidic devices fabricated by LTCC combined with thick film lithography, Advanced Materials Research, 2009, pp. 303-306.
[43] J.J. Van Tassel, C.A. Randall, Micron scale conductors and integrated passives in LTCC's by electrophoretic deposition, Proceedings - 2005 IMAPS/ACerS 1st International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, CICMT 2005, 2005, pp. 190-193.
[44] N.J. Wilkinson, M.A.A. Smith, R.W. Kay, R.A. Harris, A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing, The International Journal of Advanced Manufacturing Technology 105(11) (2019) 4599-4619.
[45] K. Zaraska, M. Machnik, A. Bieńkowski, B. Synkiewicz, Depth of laser etching in green state LTCC, Proceedings - IMAPS/ACerS 8th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, CICMT 2012, 2012, pp. 136-141.
[46] F. Steinhäußer, K. Hradil, S. Schwarz, W. Artner, M. Stöger-Pollach, A. Steiger-Thirsfeld, A. Bittner, U. Schmid, Wet chemical porosification of LTCC in phosphoric acid: Celsian forming tapes, Journal of the European Ceramic Society 35(16) (2015) 4465-4473.
[47] D. Rathnayake-Arachchige, D.A. Hutt, P.P. Conway, Excimer laser machining of fired LTCC for selectively metallized open channel structures, 46th International Symposium on Microelectronics, IMAPS 2013, 2013, pp. 194-199.
[48] M.D. Canonica, B.L. Wardle, P.C. Lozano, Micro-patterning of porous alumina layers with aligned nanopores, Journal of Micromechanics and Microengineering 25(1) (2015).
[49] M.A. El-Sayed, H. Hassanin, K. Essa, Effect of casting practice on the reliability of Al cast alloys, International Journal of Cast Metals Research 29(6) (2016) 350-354.
[50] H. Hassanin, H. Ostadi, K. Jiang, Surface roughness and geometrical characterization of ultra-thick micro moulds for ceramic micro fabrication using soft lithography, The International Journal of Advanced Manufacturing Technology 67(9) (2013) 2293-2300.
[51] H. Hassanin, M. Ahmed El-Sayed, A. ElShaer, K. Essa, K. Jiang, Microfabrication of Net Shape Zirconia/Alumina Nanocomposite Micro Parts, Nanomaterials 8(8) (2018) 593.
[52] P. Thomas, B. Levenfeld, A. Várez, A. Cervera, Production of alumina microparts by powder injection molding, International Journal of Applied Ceramic Technology 8(3) (2011) 617-626.
[53] T. Uchikoshi, S. Furumi, T.S. Suzuki, Y. Sakka, Direct shaping of alumina ceramics by electrophoretic deposition using conductive polymer-coated ceramic substrates, Advanced Materials Research, 2007, pp. 227-230.
[54] T. Shannon, S. Blackburn, Production of alumina/zirconia laminated composites by co-extrusion, Ceramic Engineering and Science Proceedings 16(5) (1995) 1115-1120.
[55] H.S. Tak, C.S. Ha, H.J. Lee, H.W. Lee, Y.K. Jeong, M.C. Kang, Characteristic evaluation of Al<inf>2</inf>O<inf>3</inf>/CNTs hybrid materials for micro-electrical discharge machining, Transactions of Nonferrous Metals Society of China (English Edition) 21(SUPPL. 1) (2011) s28-s32.
[56] H. Hassanin, K. Jiang, Optimized process for the fabrication of zirconia micro parts, Microelectronic Engineering 87(5) (2010) 1617-1619.
[57] J.M. Rheaume, A.P. Pisano, Surface micromachining of unfired ceramic sheets, Microsystem Technologies 17(1) (2011) 133-142.
[58] V.A. Vulcano Rossi, M.R. Mullen, N.A. Karker, Z. Zhao, M.W. Kowarz, P.K. Dutta, M.A. Carpenter, Microfabricated electrochemical sensors for combustion applications, Proceedings of SPIE - The International Society for Optical Engineering, 2015.
[59] P.C. Yu, Q.F. Li, J.Y.H. Fuh, T. Li, P.W. Ho, Micro injection molding of micro gear using nano-sized zirconia powder, Microsystem Technologies 15(3) (2009) 401-406.
[60] G. Cao, Growth of oxide nanorod arrays through sol electrophoretic deposition, Journal of Physical Chemistry B 108(52) (2004) 19921-19931.
[61] C.A. Zorman, R.J. Parro, Micro- and nanomechanical structures for silicon carbide MEMS and NEMS, Physica Status Solidi (B) Basic Research 245(7) (2008) 1404-1424.
[62] S.W. Youn, C. Okuyama, M. Takahashi, R. Maeda, Replication of nano/micro quartz mold by hot embossing and its application to borosilicate glass embossing, International Journal of Modern Physics B 22(31-32) (2008) 6118-6123.
[63] B.K. Chen, Y. Zhang, Y. Sun, Novel mems grippers capable of both grasping and active release of micro objects, TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems, 2009, pp. 2389-2392.
[64] C.T. Yang, S.S. Ho, B.H. Yan, Micro hole machining of borosilicate glass through electrochemical discharge machining (ECDM), Key Engineering Materials 196 (2001) 149-166.
[65] A. Amnache, J. Neumann, L.G. Frechette, Capabilities and limits to form high aspect-ratio microstructures by molding of borosilicate glass, Journal of Microelectromechanical Systems 28(3) (2019) 432-440.
[66] S. Gu-Stoppel, V. Stenchly, D. Kaden, H.J. Quenzer, B. Wagner, U. Hofinann, R. Dudde, New designs for MEMS-micromirrors and micromirror packaging with electrostatic and piezoelectric drive, Advanced Materials - TechConnect Briefs 2016, 2016, pp. 87-90.
[67] V. Stenchly, H.J. Quenzer, U. Hofmann, J. Janes, B. Jensen, W. Benecke, New fabrication method of glass packages with inclined optical windows for micromirrors on wafer level, Proceedings of SPIE - The International Society for Optical Engineering, 2013.
[68] M. Schulz, Polymer derived ceramics in MEMS/NEMS - A review on production processes and application, Advances in Applied Ceramics 108(8) (2009) 454-460.
[69] J. Tolvanen, J. Hannu, J. Juuti, H. Jantunen, Piezoelectric Flexible LCP–PZT Composites for Sensor Applications at Elevated Temperatures, Electronic Materials Letters 14(2) (2018) 113-123.
[70] L. Gorjan, T. Lusiola, D. Scharf, F. Clemens, Kinetics and equilibrium of Eco-debinding of PZT ceramics shaped by thermoplastic extrusion, Journal of the European Ceramic Society 37(16) (2017) 5273-5280.
[71] X. Chen, R. Chen, Z. Chen, J. Chen, K.K. Shung, Q. Zhou, Transparent lead lanthanum zirconate titanate (PLZT) ceramic fibers for high-frequency ultrasonic transducer applications, Ceramics International 42(16) (2016) 18554-18559.
[72] C. Montalba, K. Ramam, D.G. Eskin, E.M. Ruiz-Navas, O. Prat, Fabrication of a novel hybrid AlMg5/SiC/PLZT metal matrix composite produced by hot extrusion, Materials and Design 69 (2015) 213-218.
[73] D. Carponcin, E. Dantras, G. Michon, J. Dandurand, G. Aridon, F. Levallois, L. Cadiergues, C. Lacabanne, New hybrid polymer nanocomposites for passive vibration damping by incorporation of carbon nanotubes and lead zirconate titanate particles, Journal of Non-Crystalline Solids 409 (2015) 20-26.
[74] P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication: Microlithography, Society of Photo-Optical Instrumentation Engineers, washington, 1997.
[75] C. Qiu, N.J.E. Adkins, H. Hassanin, M.M. Attallah, K. Essa, In-situ shelling via selective laser melting: Modelling and microstructural characterisation, Materials & Design 87 (2015) 845-853.
[76] A. Sabouri, A.K. Yetisen, R. Sadigzade, H. Hassanin, K. Essa, H. Butt, Three-Dimensional Microstructured Lattices for Oil Sensing, Energy & Fuels 31(3) (2017) 2524-2529.
[77] K. Essa, P. Jamshidi, J. Zou, M.M. Attallah, H. Hassanin, Porosity control in 316L stainless steel using cold and hot isostatic pressing, Materials & Design 138 (2018) 21-29.
[78] H. Klippstein, H. Hassanin, A. Diaz De Cerio Sanchez, Y. Zweiri, L. Seneviratne, Additive Manufacturing of Porous Structures for Unmanned Aerial Vehicles Applications, Advanced Engineering Materials 20(9) (2018) 1800290.
[79] N. Al-Hashimi, N. Begg, R.G. Alany, H. Hassanin, A. Elshaer, Oral Modified Release Multiple-Unit Particulate Systems: Compressed Pellets, Microparticles and Nanoparticles, Pharmaceutics 10(4) (2018) 176.
[80] A. Mohammed, A. Elshaer, P. Sareh, M. Elsayed, H. Hassanin, Additive Manufacturing Technologies for Drug Delivery Applications, International Journal of Pharmaceutics 580 (2020) 119245.
[81] G.T. Chu, G.A. Brady, W. Miao, J.W. Halloran, Ceramic SFF by direct and indirect stereolithography, MRS Proceedings 542 (1998) 119.
[82] G. Ding, R. He, K. Zhang, C. Xie, M. Wang, Y. Yang, D. Fang, Stereolithography-based additive manufacturing of gray-colored SiC ceramic green body, Journal of the American Ceramic Society 102(12) (2019) 7198-7209.
[83] Y. de Hazan, D. Penner, SiC and SiOC ceramic articles produced by stereolithography of acrylate modified polycarbosilane systems, Journal of the European Ceramic Society 37(16) (2017) 5205-5212.
[84] R. He, G. Ding, K. Zhang, Y. Li, D. Fang, Fabrication of SiC ceramic architectures using stereolithography combined with precursor infiltration and pyrolysis, Ceramics International 45(11) (2019) 14006-14014.
[85] X. Wang, F. Schmidt, D. Hanaor, P.H. Kamm, S. Li, A. Gurlo, Additive manufacturing of ceramics from preceramic polymers: A versatile stereolithographic approach assisted by thiol-ene click chemistry, Additive Manufacturing 27 (2019) 80-90.
[86] W. Liu, H. Wu, Z. Tian, Y. Li, Z. Zhao, M. Huang, X. Deng, Z. Xie, S. Wu, 3D printing of dense structural ceramic microcomponents with low cost: Tailoring the sintering kinetics and the microstructure evolution, Journal of the American Ceramic Society 102(5) (2019) 2257-2262.
[87] V.K. Varadan, V.V. Varadan, Micro stereo lithography for fabrication of 3D polymeric and ceramic MEMS, Proceedings of SPIE - The International Society for Optical Engineering, 2001, pp. 147-157.
[88] X. Zheng, H. Lee, T. Weisgraber, M. Shusteff, J. DeOtte, E. Duoss, J. Kuntz, M. Biener, Q. Ge, J. Jackson, S. Kucheyev, N. Fang, C. Spadaccini, Ultralight, Ultrastiff Mechanical Metamaterials, Science 344 (2014) 1373-1377.
[89] X. Song, Z. Chen, L. Lei, K. Shung, Q. Zhou, Y. Chen, Piezoelectric component fabrication using projection-based stereolithography of barium titanate ceramic suspensions, Rapid Prototyping Journal 23(1) (2017) 44-53.
[90] W. Chen, F. Wang, K. Yan, Y. Zhang, D. Wu, Micro-stereolithography of KNN-based lead-free piezoceramics, Ceramics International 45(4) (2019) 4880-4885.
[91] Z.C. Eckel, C. Zhou, J.H. Martin, A.J. Jacobsen, W.B. Carter, T.A. Schaedler, Additive manufacturing of polymer-derived ceramics, Science 351(6268) (2016) 58-62.
[92] M. Wang, C. Xie, R. He, G. Ding, K. Zhang, G. Wang, D. Fang, Polymer-derived silicon nitride ceramics by digital light processing based additive manufacturing, Journal of the American Ceramic Society 102(9) (2019) 5117-5126.
[93] J. Schmidt, P. Colombo, Digital light processing of ceramic components from polysiloxanes, Journal of the European Ceramic Society 38(1) (2018) 57-66.
[94] J. Schmidt, A.A. Altun, M. Schwentenwein, P. Colombo, Complex mullite structures fabricated via digital light processing of a preceramic polysiloxane with active alumina fillers, Journal of the European Ceramic Society 39(4) (2019) 1336-1343.
[95] M. Hatzenbichler, M. Geppert, S. Gruber, E. Ipp, R. Almedal, J. Stampfl, DLP-based light engines for additive manufacturing of ceramic parts, SPIE2012.
[96] H.O.T. Ware, C. Sun, Method for attaining dimensionally accurate conditions for high-resolution three-dimensional printing ceramic composite structures using microclip process, Journal of Micro and Nano-Manufacturing 7(3) (2019).
[97] A. Galatas, H. Hassanin, Y. Zweiri, L. Seneviratne, Additive Manufactured Sandwich Composite/ABS Parts for Unmanned Aerial Vehicle Applications, Polymers 10(11) (2018) 1262.
[98] H. Klippstein, A. Diaz De Cerio Sanchez, H. Hassanin, Y. Zweiri, L. Seneviratne, Fused Deposition Modeling for Unmanned Aerial Vehicles (UAVs): A Review, Advanced Engineering Materials 20(2) (2018) 1700552.
[99] W. Huang, X. Zhang, Q. Wu, B. Wu, Fabrication of HA/ß-TCP scaffolds based on micro-syringe extrusion system, Rapid Prototyping Journal 19(5) (2013) 319-326.
[100] K. Cai, B. Román-Manso, J.E. Smay, J. Zhou, M.I. Osendi, M. Belmonte, P. Miranzo, Geometrically complex silicon carbide structures fabricated by robocasting, Journal of the American Ceramic Society 95(8) (2012) 2660-2666.
[101] M. Touri, F. Moztarzadeh, N.A.A. Osman, M.M. Dehghan, M. Mozafari, Optimisation and biological activities of bioceramic robocast scaffolds provided with an oxygen-releasing coating for bone tissue engineering applications, Ceramics International 45(1) (2019) 805-816.
[102] P. Colombo, J. Schmidt, G. Franchin, A. Zocca, J. Günster, Additive manufacturing techniques for fabricating complex ceramic components from preceramic polymers, American Ceramic Society Bulletin 96 (2017) 16-23.
[103] M.A. El-Sayed, K. Essa, M. Ghazy, H. Hassanin, Design optimization of additively manufactured titanium lattice structures for biomedical implants, The International Journal of Advanced Manufacturing Technology (2020).
[104] H. Hassanin, A.A. Al-Kinani, A. ElShaer, E. Polycarpou, M.A. El-Sayed, K. Essa, Stainless steel with tailored porosity using canister-free hot isostatic pressing for improved osseointegration implants, Journal of Materials Chemistry B 5(47) (2017) 9384-9394.
[105] A. Tolipov, A. Elghawail, M. Abosaf, D. Pham, H. Hassanin, K. Essa, Multipoint forming using mesh-type elastic cushion: modelling and experimentation, The International Journal of Advanced Manufacturing Technology 103(5) (2019) 2079-2090.
[106] H. Hassanin, Y. Alkendi, M. Elsayed, K. Essa, Y. Zweiri, Controlling the Properties of Additively Manufactured Cellular Structures Using Machine Learning Approaches, Advanced Engineering Materials 22(3) (2020) 1901338.
[107] S.C. Cox, P. Jamshidi, N.M. Eisenstein, M.A. Webber, H. Hassanin, M.M. Attallah, D.E.T. Shepherd, O. Addison, L.M. Grover, Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants, Materials Science and Engineering: C 64 (2016) 407-415.
[108] K. Essa, R. Khan, H. Hassanin, M.M. Attallah, R. Reed, An iterative approach of hot isostatic pressing tooling design for net-shape IN718 superalloy parts, The International Journal of Advanced Manufacturing Technology 83(9) (2016) 1835-1845.
[109] P. Regenfuss, Principles of laser micro sintering, Rapid Prototyping Journal 13(4) (2007) 204-212.
[110] T. Petsch, P. Regenfuß, R. Ebert, L. Hartwig, S. Klötzer, T. Brabant, H. Exner, Industrial laser micro sintering, ICALEO 2004 - 23rd International Congress on Applications of Laser and Electro-Optics, Congress Proceedings, 2004.
[111] J. Chen, J. Yang, T. Zuo, Micro Fabrication with Selective Laser Micro Sintering, 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2006, pp. 426-429.
[112] A. Streek, P. Regenfuß, T. Süß, R. Ebert, H. Exner, Laser micro sintering of SiO2 with an NIR-laser, SPIE2008.
[113] K. Essa, H. Hassanin, M.M. Attallah, N.J. Adkins, A.J. Musker, G.T. Roberts, N. Tenev, M. Smith, Development and testing of an additively manufactured monolithic catalyst bed for HTP thruster applications, Applied Catalysis A: General 542 (2017) 125-135.
[114] H. Windsheimer, N. Travitzky, A. Hofenauer, P. Greil, Laminated Object Manufacturing of Preceramic-Paper-Derived Si?SiC Composites, Advanced Materials 19(24) (2007) 4515-4519.
[115] A. Shama, Study of Microfluidic Mixing and Droplet Generation for 3D Printing of Nuclear Fuels, 2017.
[116] B. Derby, Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution, 2010, pp. 395-414.
[117] B. Derby, Materials opportunities in layered manufacturing technology, Journal of Materials Science 37 (2002) 3091-3092.
[118] X. Zhao†, J.R.G. Evans, M.J. Edirisinghe, J.-H. Song, Direct Ink-Jet Printing of Vertical Walls, Journal of the American Ceramic Society 85(8) (2002) 2113-2115.
[119] S. Hill, Micromoulding - a small injection of technology, Materials World 9(6) (2001) 24-25.
[120] C.A. Griffiths, S.S. Dimov, E.B. Brousseau, R.T. Hoyle, The effects of tool surface quality in micro-injection moulding, Journal of Materials Processing Technology 189(1-3) (2007) 418-427.
[121] V.N. Stone, S.J. Baldock, L.A. Croasdell, L.A. Dillon, P.R. Fielden, N.J. Goddard, C.L.P. Thomas, B.J.T. Brown, Free flow isotachophoresis in an injection moulded miniaturised separation chamber with integrated electrodes, Journal of Chromatography A 1155(2) (2007) 199-205.
[122] S.D.J. Hill, K.P. Kamper, U. Dasbach, J. Dopper, W. Erhfeld, M. Kaupert, An investigation of computer modelling for micro-injection moulding, Simulation and Design of Microsystems and Microstructures, Southampton, 1995, pp. 275-283.
[123] Z.Y. Liu, N.H. Loh, S.B. Tor, K.A. Khor, Y. Murakoshi, R. Maeda, T. Shimizu, Micro-powder injection molding, Journal of Materials Processing Technology 127(2) (2002) 165-168.
[124] N.H. Loh, S.B. Tor, B.Y. Tay, Y. Murakoshi, R. Maeda, Fabrication of micro gear by micro powder injection molding, Microsystem Technologies 14 (2008) 43-50.
[125] A. Michrafy, J.A. Dodds, M.S. Kadiri, Wall friction in the compaction of pharmaceutical powders: measurement and effect on the density distribution, Powder Technology 148 (2004) 53-5.
[126] S.C. Lee, K.T. Kim, A study on the Cap model for metal and ceramic powder under cold compaction, Materials Science and Engineering A 445-446 (2007) 163-169.
[127] V. Piotter, K. Plewa, T. Müller, A. Ruh, E. Vorster, H. Ritzhaupt-Kleissl, J. Hausselt, Manufacturing of High-Grade Micro Components by Powder Injection Molding, Key Engineering Materials 447-448 (2010) 351-355.
[128] U.M. Attia, J.R. Alcock, Fabrication of ceramic micro-scale hollow components by micro-powder injection moulding, Journal of the European Ceramic Society 32(6) (2012) 1199-1204.
[129] J.H. Yoo, W. Gao, Near-net ceramic micro-tubes fabricated by electrophoretic deposition process, International Journal of Modern Physics B 17(8-9) (2003) 1147-1151.
[130] P. Sarkar, O. Prakash, G. Wang, R. Nicholson, Micro-laminate ceramic/ceramic composites (ysz/aizoq) by electrophoretic deposition, 18th Annual Conference on Composites and Advanced Ceramic Materials, John Wiley & Sons, Cocoa Beach, 2009, p. 1019.
[131] H. Von Both, M. Dauscher, J. Haußelt, Fabrication of microstructured ceramics by electrophoretic deposition of optimized suspensions, 28th International Conference on Advanced Ceramics and Composites Cocoa Beach, 2004, pp. 135-140.
[132] S. Bonnas, H.-J. Ritzhaupt-Kleissl, J. Hausselt, Electrophoretic deposition for fabrication of ceramic microparts, Journal of the European Ceramic Society 30(5) (2010) 1159-1162.
[133] J. Laubersheimer, H.J. Ritzhaupt-Kleissl, J. Hausselt, G. Emig, Electrophoretic deposition of sol-gel ceramic microcomponents using UV-curable alkoxide precursors, Journal of the European Ceramic Society 18(3) (1998) 255-260.
[134] A.C. Zaman, C.B. Üstündağ, N. Kuşkonmaz, F. Kaya, C. Kaya, 3-D micro-ceramic components from hydrothermally processed carbon nanotube–boehmite powders by electrophoretic deposition, Ceramics International 36(5) (2010) 1703-1710.
[135] J. Kastyl, Z. Chlup, F. Clemens, M. Trunec, Ceramic core–shell composites with modified mechanical properties prepared by thermoplastic co-extrusion, Journal of the European Ceramic Society 35(10) (2015) 2873-2881.
[136] A.M. Soydan, Ö. Yıldız, O.Y. Akduman, R. Akdeniz, A new approach for production of anode microtubes as solid oxide fuel cell support, Ceramics International 44(18) (2018) 23001-23007.
[137] K. Sharmin, I. Schoegl, Optimization of binder removal for ceramic microfabrication via polymer co-extrusion, Ceramics International 40(3) (2014) 3939-3946.
[138] K. Sharmin, I. Schoegl, Processing and analysis of ceramic mesoscale combustors fabricated by co-extrusion, ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 2013.
[139] J. Powell, S. Blackburn, Co-extrusion of multilayered ceramic micro-tubes for use as solid oxide fuel cells, Journal of the European Ceramic Society 30(14) (2010) 2859-2870.
[140] P.W. Alexander, D. Brei, J.W. Halloran, DEPP functionally graded piezoceramics via micro-fabrication by co-extrusion, Journal of Materials Science 42(14) (2007) 5805-5814.
[141] C. Van Hoy, A. Barda, M. Griffith, J.W. Halloran, Microfabrication of ceramics by co-extrusion, Journal of the American Ceramic Society 81(1) (1998) 152-158.
[142] H. Hassanin, K. Jiang, Net shape manufacturing of ceramic micro parts with tailored graded layers, Journal of Micromechanics and Microengineering 24(1) (2013) 015018.
[143] S. Brittain, K. Paul, X.-M. Zhao, G. Whitesides, Soft lithography and microfabrication, Physics World 11(5) (1998) 31.
[144] Y. Xia, G.M. Whitesides, Soft lithography, Annual Review of Materials Science 28(1) (1998) 153-184.
[145] J.A. Rogers, R.G. Nuzzo, Recent progress in soft lithography, Materials Today 8(2) (2005) 50-56.
[146] M. Brehmer, L. Conrad, L. Funk, New developments in soft lithography, Journal of Dispersion Science and Technology 24(3-4) (2003) 291-304.
[147] T.W. Harris, Chemical Milling, Clarendon Press, Oxford, 1976.
[148] W. Wang, S.A. Soper, BioMEMS : technologies and applications, CRC Press,Taylor & Francis Group, LLC, London, 2007.
[149] J.N. Helbert, Handbook of VLSI microlithography, William Andrew Publishing, LLC, Norwich, New York, U.S.A., 2001.
[150] H. Lorenz, M. Despont, N. Fahrnl, N. LaBianca, P. Renaud, P. Vettiger, SU-8: a low-cost negative resist for MEMS, Seventh Workshop on Micromachining, Micromechanics and Microsystems in Europe, UK, 1997, pp. 121-4.
[151] A. Mata, A.J. Fleischman, S. Roy, Fabrication of multi-layer SU-8 microstructures, Journal of Micromechanics and Microengineering 16 (2006) 276-84.
[152] S. Roth, L. Dellmann, G.A. Racine, N.F. de Rooij, High aspect ratio UV photolithography for electroplated structures, Journal of Micromechanics and Microengineering 9 (1999) 105-8.
[153] W. Bauer, R. Knitter, A. Emde, G. Bartelt, D. Gohring, E. Hansjosten, Replication techniques for ceramic microcomponents with high aspect ratios, Microsystem Technologies 9 (2002) 81-6.
[154] Z. Dou, S. Bo, T.W. Button, Microfabrication of three-dimensional, free-standing ceramic MEMS components by soft moulding, Advanced Engineering Materials 5 (2003) 924-7.
[155] Z. Dou, B. Su, T.W. Button, Preparation of concentrated aqueous alumina suspensions for soft-molding microfabrication, 8th International Conference on Ceramic Processing, UK, 2004, pp. 231-7.
[156] K. Jung-Sik, K. Jiang, I. Chang, A net shape process for metallic microcomponent fabrication using Al and Cu micro/nano powders, Journal of Micromechanics and Microengineering 16 (2006) 48-52.
[157] M. Imbaby, K. Jiang, I. Chang, Fabrication of 316-L stainless steel micro parts by softlithography and powder metallurgy, Materials Letters 62(26) (2008) 4213-4216.
[158] H. Hassanin, K. Jiang, Multiple replication of thick PDMS micropatterns using surfactants as release agents, Microelectronic Engineering 88(11) (2011) 3275-3277.
[159] M. Heule, U.P. Schönholzer, L.J. Gauckler, Patterning colloidal suspensions by selective wetting of microcontact-printed surfaces, Journal of the European Ceramic Society 24(9) (2004) 2733-2739.
[160] J.H. Lee, M.H. Hon, Y.W. Chung, I.C. Leu, Microcontact Printing of Organic Self‐Assembled Monolayers for Patterned Growth of Well‐Aligned ZnO Nanorod Arrays and their Field‐Emission Properties, Journal of the American Ceramic Society 92(10) (2009) 2192-2196.
[161] H. Nagata, S.W. Ko, E. Hong, C.A. Randall, S. Trolier‐McKinstry, P. Pinceloup, D. Skamser, M. Randall, A. Tajuddin, Microcontact printed BaTiO3 and LaNiO3 thin films for capacitors, Journal of the American Ceramic Society 89(9) (2006) 2816-2821.
[162] X.M. Zhao, Y. Xia, G.M. Whitesides, Fabrication of three‐dimensional micro‐structures: Microtransfer molding, Advanced Materials 8(10) (1996) 837-840.
[163] D. Zhang, B. Su, T.W. Button, Preparation of concentrated aqueous alumina suspensions for soft-molding microfabrication, Journal of the European Ceramic Society 24(2) (2004) 231-237.
[164] J. Moon, C. Kang, S. Cho, Microtransfer molding of gelcasting suspensions to fabricate barrier ribs for plasma display panel, Journal of the American Ceramic Society 86(11) (2003) 1969-1972.
[165] M. Heule, J. Schell, L.J. Gauckler, Powder‐Based Tin Oxide Microcomponents on Silicon Substrates Fabricated by Micromolding in Capillaries, Journal of the American Ceramic Society 86(3) (2003) 407-12.
[166] M. Heule, L.J. Gauckler, Gas sensors fabricated from ceramic suspensions by micromolding in capillaries, Advanced Materials 13(23) (2001) 1790-1793.
[167] W.S. Beh, Y. Xia, D. Qin, Formation of patterned microstructures of polycrystalline ceramics from precursor polymers using micromolding in capillaries, Journal of Materials Research 14(10) (1999) 3995-4003.
[168] P. Obreja, D. Cristea, A. Dinescu, R. Gavrila, Replica molding of polymeric components for microsystems, 2009 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS, Rome, 2009.
[169] R. Mukherjee, G.K. Patil, A. Sharma, Solvent vapor-assisted imprinting of polymer films coated on curved surfaces with flexible PVA stamps, Industrial & Engineering Chemistry Research 48(19) (2009) 8812-8818.
[170] J.R. Lawrence, G.A. Turnbull, I.D. Samuel, Polymer laser fabricated by a simple micromolding process, Applied Physics Letters 82(23) (2003) 4023-4025.
[171] U.P. Schonholzer, L.J. Gauckler, Ceramic parts patterned in the micrometer range, Advanced Materials 11 (1999) 630-2.
[172] U.P. Schonholzer, R. Hummel, L.J. Gauckler, Microfabrication of ceramics by filling of photoresist molds, Advanced Materials 12 (2000) 1261-3.
[173] H. Hassanin, K. Jiang, Fabrication and characterization of stabilised zirconia micro parts via slip casting and soft moulding, Scripta Materialia 69(6) (2013) 433-436.
[174] Z. Zhu, H. Hassanin, K. Jiang, A soft moulding process for manufacture of net-shape ceramic microcomponents, The International Journal of Advanced Manufacturing Technology 47(1-4) (2010) 147-152.
[175] H. Hassanin, H. Ostadi, K. Jiang, Surface roughness and geometrical characterization of ultra-thick micro moulds for ceramic micro fabrication using soft lithography, The International Journal of Advanced Manufacturing Technology 67(9-12) (2013) 2293-2300.
[176] H. Hassanin, K. Jiang, Net shape manufacturing of ceramic micro parts with tailored graded layers, Journal of Micromechanics and Microengineering 24(1) (2014).
[177] H. Hassanin, K. Jiang, Infiltration-processed, functionally graded materials for microceramic componenets, IEEE 23rd International Conference on The Micro Electro Mechanical Systems (MEMS). 2010, pp. 368-371.
[178] V. Piotter, W. Bauer, R. Knitter, M. Mueller, T. Mueller, K. Plewa, Powder injection moulding of metallic and ceramic micro parts, Microsystem Technologies 17(2) (2011) 251.
[179] I. Corni, M.P. Ryan, A.R. Boccaccini, Electrophoretic deposition: From traditional ceramics to nanotechnology, Journal of the European Ceramic Society 28(7) (2008) 1353-1367.
[180] J.E. ten Elshof, S.U. Khan, O.F. Göbel, Micrometer and nanometer-scale parallel patterning of ceramic and organic–inorganic hybrid materials, Journal of the European Ceramic Society 30(7) (2010) 1555-1577.
[181] Y.F. Chang, Q.R. Chou, J.Y. Lin, C.H. Lee, Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique, Applied Physics A (Materials Science Processing) (2007) 193-6.
[182] A. Sammak, S. Azimi, N. Izadi, B.K. Hosseinieh, S. Mohajerzadeh, Deep vertical etching of silicon wafers using a hydrogenation-assisted reactive ion etching, Journal of Microelectromechanical Systems 16(4) (2007) 912-918.
[183] S. Liu, B. Guillet, C. Adamo, V.M. Nascimento, S. Lebargy, G. Brasse, F. Lemarié, J. El Fallah, D.G. Schlom, L. Méchin, Free-standing La0.7Sr0.3MnO3 suspended micro-bridges on buffered silicon substrates showing undegraded low frequency noise properties, Journal of Micromechanics and Microengineering 29(6) (2019) 065008.
[184] J. Zhang, W. Ren, X. Jing, P. Shi, X. Wu, Deep reactive ion etching of PZT ceramics and PMN-PT single crystals for high frequency ultrasound transducers, Ceramics International 41 (2015) S656-S661.
[185] H.M. Chow, B.H. Yan, F.Y. Huang, Micro slit machining using electro-discharge machining with a modified rotary disk electrode (RDE), Journal of Materials Processing Technology 91(1) (1999) 161-166.
[186] F.-T. Weng, R.F. Shyu, C.-S. Hsu, Fabrication of micro-electrodes by multi-EDM grinding process, Journal of Materials Processing Technology 140 (2003) 332-334.
[187] C. Shun-Tong, Fabrication of high-density micro holes by upward batch micro EDM, Journal of Micromechanics and Microengineering 18 (2008) 085002 (9 pp.).
[188] K. Egashira, K. Mizutani, Micro-drilling of monocrystalline silicon using a cutting tool, Precision Engineering 26(3) (2002) 263-268.
[189] R. Phatthanakun, P. Songsiriritthigul, P. Klysubun, N. Chomnawang, Multi-step powder casting and X-ray lithography of SU-8 resist for complicated 3D microstructures, 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology IEEE, Piscataway, NJ, USA, 2008, pp. 805-8.
[190] K.K. Saxena, S. Agarwal, S.K. Khare, Surface Characterization, Material Removal Mechanism and Material Migration Study of Micro EDM Process on Conductive SiC, Procedia CIRP 42 (2016) 179-184.
[191] N. Ojha, F. Zeller, C. Mueller, H. Reinecke, Comparative study on parametric analysis of μedm of non-conductive ceramics, Key Engineering Materials, 2014, pp. 693-700.
[192] H. Zhang, Y. Liu, J. Chen, R. Shen, B. Cai, D. Wang, Experimental research on pulse generator for EDM of non-conductive ceramics, Key Engineering Materials, 2009, pp. 649-653.
[193] K. Pallav, K.F. Ehmann, Feasibility of Laser Induced Plasma Micro-machining (LIP-MM), in: S. Ratchev (Ed.) Precision Assembly Technologies and Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 73-80.
[194] C. Jimin, Y. Yuehua, Laser micro-fabrication in RF MEMS switches, 2009 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Sciences Meeting, ANTEM/URSI 2009, February 15, 2009 - February 18, 2009, Inst. of Elec. and Elec. Eng. Computer Society, Banff, AB, Canada, 2009.
[195] M.S. Amer, L. Dosser, S. LeClair, J.F. Maguire, Induced stresses and structural changes in silicon wafers as a result of laser micro-machining, Applied Surface Science 187 (2002) 291-6.
[196] M.S. Amer, M.A. El-Ashry, L.R. Dosser, K.E. Hix, J.F. Maguire, B. Irwin, Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers, Applied Surface Science 242 (2005) 162-7.
[197] L. Rihakova, H. Chmelickova, Laser micromachining of glass, silicon, and ceramics, Advances in Materials Science and Engineering 2015 (2015).
[198] M.R.H. Knowles, G. Rutterford, D. Karnakis, T. Dobrev, P. Petkov, S. Dimov, Laser micro-milling of ceramics, dielectrics and metals using nanosecond and picosecond lasers, in: W. Menz, S. Dimov, B. Fillon (Eds.), 4M 2006 - Second International Conference on Multi-Material Micro Manufacture, Elsevier, Oxford, 2006, pp. 131-134.
[199] S.H. Kim, T. Balasubramani, I.-B. Sohn, Y.-C. Noh, J. Lee, J. Lee, S. Jeong, Precision microfabrication of AlN and Al2O3 ceramics by femtosecond laser ablation - art. no. 68791O, Proc SPIE 6879 (2008).
[200] E. Kacar, M. Mutlu, E. Akman, A. Demir, L. Candan, T. Canel, V. Gunay, T. Sınmazcelik, Characterization of the drilling alumina ceramic using Nd:YAG pulsed laser, Journal of Materials Processing Technology 209(4) (2009) 2008-2014.
[201] E. Ferraris, J. Vleugels, M. Galbiati, B. Lauwers, D. Reynaerts, Investigation of micro electrical discharge machining (EDM) performance of TiB2, 16th International Symposium on Electromachining, ISEM 2010, 2010, pp. 555-560.
[202] T. Wohlers, T. Caffrey, R.I. Campbell, O. Diegel, J. Kowen, Wohlers Report 2018: 3D Printing and Additive Manufacturing State of the Industry; Annual Worldwide Progress Report, Wohlers Associates2018.
[203] T. Caffrey, Wohlers Report 2015: Additive Manufacturing and 3D Printing, State of the Industry, Ft. Collins, CO: Wohlers Associates (2015).
[204] A. Licciulli, C.E. Corcione, A. Greco, V. Amicarelli, A. Maffezzoli, Laser stereolithography of ZrO 2 toughened Al 2 O 3, Journal of The European Ceramic Society 25(9) (2005) 1581-1589.

Permalink -


Download files

Accepted author manuscript
paper v11 springer.pdf
License: CC BY 4.0
File access level: Open

  • 183
    total views
  • 103
    total downloads
  • 4
    views this month
  • 0
    downloads this month

Export as

Related outputs

4D Printing of origami structures for minimally invasive surgeries using functional scaffold
Langford, T, Mohammed, A., Essa, K., Elshaer, A. and Hassanin, H. 2020. 4D Printing of origami structures for minimally invasive surgeries using functional scaffold. Applied Sciences. 11 (1), p. 332. https://doi.org/10.3390/app11010332
Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile
Hassanin, H., Mohammed, M., Abdel-Wahab, A. and Essa, K 2020. Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile. Materials.
3D printing of solid oral dosage forms: numerous challenges with unique opportunities
Hassanin, H. 2020. 3D printing of solid oral dosage forms: numerous challenges with unique opportunities. Journal of Pharmaceutical Sciences. https://doi.org/10.1016/j.xphs.2020.08.029
Design optimisation of additively manufactured titanium lattice structures for biomedical implants
El-Sayed, M.A., Essa, K., Ghazy, M. and Hassanin, H. 2020. Design optimisation of additively manufactured titanium lattice structures for biomedical implants. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-020-05982-8
4D Printing of NiTi auxetic structure with improved ballistic performance
Hassanin, H., Abena, A., Elsayed, M.A. and Essa, K. 2020. 4D Printing of NiTi auxetic structure with improved ballistic performance. Micromachines. 11 (8), p. 745. https://doi.org/doi.org/10.3390/mi11080745