References | [1] K. Essa, F. Modica, M. Imbaby, M.A. El-Sayed, A. ElShaer, K. Jiang, H. Hassanin, Manufacturing of metallic micro-components using hybrid soft lithography and micro-electrical discharge machining, International Journal of Advanced Manufacturing Technology 91(1-4) (2017) 445-452. [2] R.P. Feynman, There's Plenty of Room at The Bottom, Journal of Microelectromechanical Systems 1(1) (1992) 60-66. [3] K.E. Petersen, Silicon as a Mechanical Material, Proceedings of the IEEE 70(5) (1982) 420-457. [4] R.T. Howe, Surface Micromachining for Microsensors and Microactuators, Journal of Vacuum Science & Technology B 6(6) (1988) 1809-1813. [5] J. Brandner, Microfabrication in Metals, Ceramics and Polymers, Russian Journal of General Chemistry 82(12) (2012) 2025-2033. [6] R. Maboudian, Surface Processes in MEMS Technology, Surface Science Reports 30(6) (1998) 207-269. [7] N. Miki, Techniques in the Fabrication of High-Speed Micro-Rotors for MEMS Applications, MEMS/NEMS, Springer, New York, 2006, pp. 335-352. [8] H. Hassanin, K. Jiang, Functionally graded microceramic components, Microelectronic Engineering 87(5) (2010) 1610-1613. [9] S. Zhuiykov, Development of ceramic electrochemical sensor based on Bi 2 Ru 2 O 7+ x− RuO 2 sub-micron oxide sensing electrode for water quality monitoring, Ceramics International 36(8) (2010) 2407-2413. [10] W. Bauer, M. Müller, R. Knitter, P. Börsting, A. Albers, M. Deuchert, V. Schulze, Design and prototyping of a ceramic micro turbine: a case study, Microsystem Technologies 16(4) (2010) 607-615. [11] K. Bae, D.Y. Jang, H.J. Jung, J.W. Kim, J.-W. Son, J.H. Shim, Micro ceramic fuel cells with multilayered yttrium-doped barium cerate and zirconate thin film electrolytes, Journal of Power Sources 248 (2014) 1163-1169. [12] R. Zhao, G. Shao, Y. Cao, L. An, C. Xu, Temperature sensor made of polymer-derived ceramics for high-temperature applications, Sensors and Actuators A: Physical 219 (2014) 58-64. [13] K. Monri, S. Maruo, Three-dimensional ceramic molding based on microstereolithography for the production of piezoelectric energy harvesters, Sensors and Actuators A: Physical 200 (2013) 31-36. [14] S. Bystrova, R. Luttge, Micromolding for ceramic microneedle arrays, Microelectronic Engineering 88(8) (2011) 1681-1684. [15] V. Piotter, M.B. Beck, H.-J. Ritzhaupt-Kleissl, A. Ruh, J. Haußelt, Recent developments in micro ceramic injection molding, International Journal of Materials Research 99(10) (2008) 1157-1162. [16] H. Teterycz, J. Kita, R. Bauer, L.J. Golonka, B.W. Licznerski, K. Nitsch, K. Wiśniewski, New design of an SnO2 gas sensor on low temperature cofiring ceramics, Sensors and Actuators B: Chemical 47(1) (1998) 100-103. [17] H. Hassanin, K. Jiang, Fabrication of Al2O3/SiC Composite Microcomponents using Non-aqueous Suspension, Advanced Engineering Materials 11(1‐2) (2009) 101-105. [18] J. Liu, Y. Yang, H. Hassanin, N. Jumbu, S. Deng, Q. Zuo, K. Jiang, Graphene–Alumina Nanocomposites with Improved Mechanical Properties for Biomedical Applications, ACS Applied Materials & Interfaces 8(4) (2016) 2607-2616. [19] K. Zhang, C. Xie, G. Wang, R. He, G. Ding, M. Wang, D. Dai, D. Fang, High solid loading, low viscosity photosensitive Al2O3 slurry for stereolithography based additive manufacturing, Ceramics International 45(1) (2019) 203-208. [20] C. Feng, K. Zhang, R. He, G. Ding, M. Xia, X. Jin, C. Xie, Additive manufacturing of hydroxyapatite bioceramic scaffolds: Dispersion, digital light processing, sintering, mechanical properties, and biocompatibility, Journal of Advanced Ceramics 9(3) (2020) 360-373. [21] L. Yang, X. Zeng, A. Ditta, B. Feng, L. Su, Y. Zhang, Preliminary 3D printing of large inclined-shaped alumina ceramic parts by direct ink writing, Journal of Advanced Ceramics 9(3) (2020) 312-319. [22] E. Peng, D. Zhang, J. Ding, Ceramic Robocasting: Recent Achievements, Potential, and Future Developments, Advanced Materials 30(47) (2018) 1802404. [23] J. Kita, A. Dziedzic, L.J. Golonka, A. Bochenek, Properties of laser cut LTCC heaters, Microelectronics Reliability 40(6) (2000) 1005-1010. [24] F. Rettig, R. Moos, Ceramic meso hot-plates for gas sensors, Sensors and Actuators B: Chemical 103(1) (2004) 91-97. [25] I.M.O. V.A. Iovdalskiy, I.M. Bleivas, V.M. Ippolitov, Hybrid integrated circuit of gas sensor, in: R. Federation (Ed.) 1996. [26] A. Suresh, M.J. Mayo, W.D. Porter, C.J. Rawn, Crystallite and Grain‐Size‐Dependent Phase Transformations in Yttria‐Doped Zirconia, Journal of the American Ceramic Society 86(2) (2003) 360-362. [27] S. Saridag, O. Tak, G. Alniacik, Basic properties and types of zirconia: An overview, World J Stomatol August 20(3) (2013) 40-47. [28] M. Ghatee, M. Shariat, J. Irvine, Investigation of electrical and mechanical properties of 3YSZ/8YSZ composite electrolytes, Solid State Ionics 180(1) (2009) 57-62. [29] B. Butz, Yttria-doped zirconia as solid electrolyte for fuel-cell applications, Karlsruher Inst. für Technologie, Karlsruher 2009. [30] H. Drings, U. Brossmann, H.E. Schaefer, Preparation of crack‐free nano‐crystalline yttria‐stabilized zirconia, Physica Status Solidi (RRL)-Rapid Research Letters 1(1) (2007) R7-R9. [31] X. Capdevila, J. Folch, A. Calleja, J. Llorens, M. Segarra, F. Espiell, J. Morante, High-density YSZ tapes fabricated via the multi-folding lamination process, Ceramics International 35(3) (2009) 1219-1226. [32] T. Jardiel, M.E. Sotomayor, B. Levenfeld, A. Várez, Optimization of the Processing of 8‐YSZ Powder by Powder Injection Molding for SOFC Electrolytes, International Journal of Applied Ceramic Technology 5(6) (2008) 574-581. [33] K.H. Cheah, P.S. Khiew, J.K. Chin, Fabrication of a zirconia MEMS-based microthruster by gel casting on PDMS soft molds, Journal of Micromechanics and Microengineering 22(9) (2012) 095013. [34] L. Jiang, R. Cheung, A Review of Silicon Carbide Development in MEMS Applications, Int. J. Computational Materials Science and Surface Engineering 2 (2009). [35] A.A. Vasiliev, A.V. Pisliakov, A.V. Sokolov, N.N. Samotaev, S.A. Soloviev, K. Oblov, V. Guarnieri, L. Lorenzelli, J. Brunelli, A. Maglione, A.S. Lipilin, A. Mozalev, A.V. Legin, Non-silicon MEMS platforms for gas sensors, Sensors and Actuators B: Chemical 224 (2016) 700-713. [36] H. Hassanin, K. Jiang, Alumina composite suspension preparation for softlithography microfabrication, Microelectronic Engineering 86(4) (2009) 929-932. [37] M. Schulz, Polymer Derived Ceramics in MEMS/NEMS—a Review on Production Processes and Application, Advances in Applied Ceramics 108 (2009) 454-460. [38] L. Brigo, J.E.M. Schmidt, A. Gandin, N. Michieli, P. Colombo, G. Brusatin, 3D Nanofabrication of SiOC Ceramic Structures, Advanced Science 5(12) (2018) 1800937. [39] J. Schmidt, L. Brigo, A. Gandin, M. Schwentenwein, P. Colombo, G. Brusatin, Multiscale ceramic components from preceramic polymers by hybridization of vat polymerization-based technologies, Additive Manufacturing 30 (2019) 100913. [40] G.L. Smith, J.S. Pulskamp, L.M. Sanchez, D.M. Potrepka, R.M. Proie, T.G. Ivanov, R.Q. Rudy, W.D. Nothwang, S.S. Bedair, C.D. Meyer, R.G. Polcawich, PZT-Based Piezoelectric MEMS Technology, Journal of the American Ceramic Society 95(6) (2012) 1777-1792. [41] C.M. Gomes, N. Travitzky, P. Greil, A.P.N. Oliveira, D. Hotza, Laminated Object Manufacturing (LOM) of glass ceramics substrates for LTCC applications, Innovative Developments in Design and Manufacturing - Advanced Research in Virtual and Rapid Prototyping, 2010, pp. 239-244. [42] Y.J. Yoon, J. Choi, J.W. Lim, H.T. Kim, J. Kim, Y.S. Choi, J.H. Lee, J.H. Kim, Microfluidic devices fabricated by LTCC combined with thick film lithography, Advanced Materials Research, 2009, pp. 303-306. [43] J.J. Van Tassel, C.A. Randall, Micron scale conductors and integrated passives in LTCC's by electrophoretic deposition, Proceedings - 2005 IMAPS/ACerS 1st International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, CICMT 2005, 2005, pp. 190-193. [44] N.J. Wilkinson, M.A.A. Smith, R.W. Kay, R.A. Harris, A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing, The International Journal of Advanced Manufacturing Technology 105(11) (2019) 4599-4619. [45] K. Zaraska, M. Machnik, A. Bieńkowski, B. Synkiewicz, Depth of laser etching in green state LTCC, Proceedings - IMAPS/ACerS 8th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, CICMT 2012, 2012, pp. 136-141. [46] F. Steinhäußer, K. Hradil, S. Schwarz, W. Artner, M. Stöger-Pollach, A. Steiger-Thirsfeld, A. Bittner, U. Schmid, Wet chemical porosification of LTCC in phosphoric acid: Celsian forming tapes, Journal of the European Ceramic Society 35(16) (2015) 4465-4473. [47] D. Rathnayake-Arachchige, D.A. Hutt, P.P. Conway, Excimer laser machining of fired LTCC for selectively metallized open channel structures, 46th International Symposium on Microelectronics, IMAPS 2013, 2013, pp. 194-199. [48] M.D. Canonica, B.L. Wardle, P.C. Lozano, Micro-patterning of porous alumina layers with aligned nanopores, Journal of Micromechanics and Microengineering 25(1) (2015). [49] M.A. El-Sayed, H. Hassanin, K. Essa, Effect of casting practice on the reliability of Al cast alloys, International Journal of Cast Metals Research 29(6) (2016) 350-354. [50] H. Hassanin, H. Ostadi, K. Jiang, Surface roughness and geometrical characterization of ultra-thick micro moulds for ceramic micro fabrication using soft lithography, The International Journal of Advanced Manufacturing Technology 67(9) (2013) 2293-2300. [51] H. Hassanin, M. Ahmed El-Sayed, A. ElShaer, K. Essa, K. Jiang, Microfabrication of Net Shape Zirconia/Alumina Nanocomposite Micro Parts, Nanomaterials 8(8) (2018) 593. [52] P. Thomas, B. Levenfeld, A. Várez, A. Cervera, Production of alumina microparts by powder injection molding, International Journal of Applied Ceramic Technology 8(3) (2011) 617-626. [53] T. Uchikoshi, S. Furumi, T.S. Suzuki, Y. Sakka, Direct shaping of alumina ceramics by electrophoretic deposition using conductive polymer-coated ceramic substrates, Advanced Materials Research, 2007, pp. 227-230. [54] T. Shannon, S. Blackburn, Production of alumina/zirconia laminated composites by co-extrusion, Ceramic Engineering and Science Proceedings 16(5) (1995) 1115-1120. [55] H.S. Tak, C.S. Ha, H.J. Lee, H.W. Lee, Y.K. Jeong, M.C. Kang, Characteristic evaluation of Al<inf>2</inf>O<inf>3</inf>/CNTs hybrid materials for micro-electrical discharge machining, Transactions of Nonferrous Metals Society of China (English Edition) 21(SUPPL. 1) (2011) s28-s32. [56] H. Hassanin, K. Jiang, Optimized process for the fabrication of zirconia micro parts, Microelectronic Engineering 87(5) (2010) 1617-1619. [57] J.M. Rheaume, A.P. Pisano, Surface micromachining of unfired ceramic sheets, Microsystem Technologies 17(1) (2011) 133-142. [58] V.A. Vulcano Rossi, M.R. Mullen, N.A. Karker, Z. Zhao, M.W. Kowarz, P.K. Dutta, M.A. Carpenter, Microfabricated electrochemical sensors for combustion applications, Proceedings of SPIE - The International Society for Optical Engineering, 2015. [59] P.C. Yu, Q.F. Li, J.Y.H. Fuh, T. Li, P.W. Ho, Micro injection molding of micro gear using nano-sized zirconia powder, Microsystem Technologies 15(3) (2009) 401-406. [60] G. Cao, Growth of oxide nanorod arrays through sol electrophoretic deposition, Journal of Physical Chemistry B 108(52) (2004) 19921-19931. [61] C.A. Zorman, R.J. Parro, Micro- and nanomechanical structures for silicon carbide MEMS and NEMS, Physica Status Solidi (B) Basic Research 245(7) (2008) 1404-1424. [62] S.W. Youn, C. Okuyama, M. Takahashi, R. Maeda, Replication of nano/micro quartz mold by hot embossing and its application to borosilicate glass embossing, International Journal of Modern Physics B 22(31-32) (2008) 6118-6123. [63] B.K. Chen, Y. Zhang, Y. Sun, Novel mems grippers capable of both grasping and active release of micro objects, TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems, 2009, pp. 2389-2392. [64] C.T. Yang, S.S. Ho, B.H. Yan, Micro hole machining of borosilicate glass through electrochemical discharge machining (ECDM), Key Engineering Materials 196 (2001) 149-166. [65] A. Amnache, J. Neumann, L.G. Frechette, Capabilities and limits to form high aspect-ratio microstructures by molding of borosilicate glass, Journal of Microelectromechanical Systems 28(3) (2019) 432-440. [66] S. Gu-Stoppel, V. Stenchly, D. Kaden, H.J. Quenzer, B. Wagner, U. Hofinann, R. Dudde, New designs for MEMS-micromirrors and micromirror packaging with electrostatic and piezoelectric drive, Advanced Materials - TechConnect Briefs 2016, 2016, pp. 87-90. [67] V. Stenchly, H.J. Quenzer, U. Hofmann, J. Janes, B. Jensen, W. Benecke, New fabrication method of glass packages with inclined optical windows for micromirrors on wafer level, Proceedings of SPIE - The International Society for Optical Engineering, 2013. [68] M. Schulz, Polymer derived ceramics in MEMS/NEMS - A review on production processes and application, Advances in Applied Ceramics 108(8) (2009) 454-460. [69] J. Tolvanen, J. Hannu, J. Juuti, H. Jantunen, Piezoelectric Flexible LCP–PZT Composites for Sensor Applications at Elevated Temperatures, Electronic Materials Letters 14(2) (2018) 113-123. [70] L. Gorjan, T. Lusiola, D. Scharf, F. Clemens, Kinetics and equilibrium of Eco-debinding of PZT ceramics shaped by thermoplastic extrusion, Journal of the European Ceramic Society 37(16) (2017) 5273-5280. [71] X. Chen, R. Chen, Z. Chen, J. Chen, K.K. Shung, Q. Zhou, Transparent lead lanthanum zirconate titanate (PLZT) ceramic fibers for high-frequency ultrasonic transducer applications, Ceramics International 42(16) (2016) 18554-18559. [72] C. Montalba, K. Ramam, D.G. Eskin, E.M. Ruiz-Navas, O. Prat, Fabrication of a novel hybrid AlMg5/SiC/PLZT metal matrix composite produced by hot extrusion, Materials and Design 69 (2015) 213-218. [73] D. Carponcin, E. Dantras, G. Michon, J. Dandurand, G. Aridon, F. Levallois, L. Cadiergues, C. Lacabanne, New hybrid polymer nanocomposites for passive vibration damping by incorporation of carbon nanotubes and lead zirconate titanate particles, Journal of Non-Crystalline Solids 409 (2015) 20-26. [74] P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication: Microlithography, Society of Photo-Optical Instrumentation Engineers, washington, 1997. [75] C. Qiu, N.J.E. Adkins, H. Hassanin, M.M. Attallah, K. Essa, In-situ shelling via selective laser melting: Modelling and microstructural characterisation, Materials & Design 87 (2015) 845-853. [76] A. Sabouri, A.K. Yetisen, R. Sadigzade, H. Hassanin, K. Essa, H. Butt, Three-Dimensional Microstructured Lattices for Oil Sensing, Energy & Fuels 31(3) (2017) 2524-2529. [77] K. Essa, P. Jamshidi, J. Zou, M.M. Attallah, H. Hassanin, Porosity control in 316L stainless steel using cold and hot isostatic pressing, Materials & Design 138 (2018) 21-29. [78] H. Klippstein, H. Hassanin, A. Diaz De Cerio Sanchez, Y. Zweiri, L. Seneviratne, Additive Manufacturing of Porous Structures for Unmanned Aerial Vehicles Applications, Advanced Engineering Materials 20(9) (2018) 1800290. [79] N. Al-Hashimi, N. Begg, R.G. Alany, H. Hassanin, A. Elshaer, Oral Modified Release Multiple-Unit Particulate Systems: Compressed Pellets, Microparticles and Nanoparticles, Pharmaceutics 10(4) (2018) 176. [80] A. Mohammed, A. Elshaer, P. Sareh, M. Elsayed, H. Hassanin, Additive Manufacturing Technologies for Drug Delivery Applications, International Journal of Pharmaceutics 580 (2020) 119245. [81] G.T. Chu, G.A. Brady, W. Miao, J.W. Halloran, Ceramic SFF by direct and indirect stereolithography, MRS Proceedings 542 (1998) 119. [82] G. Ding, R. He, K. Zhang, C. Xie, M. Wang, Y. Yang, D. Fang, Stereolithography-based additive manufacturing of gray-colored SiC ceramic green body, Journal of the American Ceramic Society 102(12) (2019) 7198-7209. [83] Y. de Hazan, D. Penner, SiC and SiOC ceramic articles produced by stereolithography of acrylate modified polycarbosilane systems, Journal of the European Ceramic Society 37(16) (2017) 5205-5212. [84] R. He, G. Ding, K. Zhang, Y. Li, D. Fang, Fabrication of SiC ceramic architectures using stereolithography combined with precursor infiltration and pyrolysis, Ceramics International 45(11) (2019) 14006-14014. [85] X. Wang, F. Schmidt, D. Hanaor, P.H. Kamm, S. Li, A. Gurlo, Additive manufacturing of ceramics from preceramic polymers: A versatile stereolithographic approach assisted by thiol-ene click chemistry, Additive Manufacturing 27 (2019) 80-90. [86] W. Liu, H. Wu, Z. Tian, Y. Li, Z. Zhao, M. Huang, X. Deng, Z. Xie, S. Wu, 3D printing of dense structural ceramic microcomponents with low cost: Tailoring the sintering kinetics and the microstructure evolution, Journal of the American Ceramic Society 102(5) (2019) 2257-2262. [87] V.K. Varadan, V.V. Varadan, Micro stereo lithography for fabrication of 3D polymeric and ceramic MEMS, Proceedings of SPIE - The International Society for Optical Engineering, 2001, pp. 147-157. [88] X. Zheng, H. Lee, T. Weisgraber, M. Shusteff, J. DeOtte, E. Duoss, J. Kuntz, M. Biener, Q. Ge, J. Jackson, S. Kucheyev, N. Fang, C. Spadaccini, Ultralight, Ultrastiff Mechanical Metamaterials, Science 344 (2014) 1373-1377. [89] X. Song, Z. Chen, L. Lei, K. Shung, Q. Zhou, Y. Chen, Piezoelectric component fabrication using projection-based stereolithography of barium titanate ceramic suspensions, Rapid Prototyping Journal 23(1) (2017) 44-53. [90] W. Chen, F. Wang, K. Yan, Y. Zhang, D. Wu, Micro-stereolithography of KNN-based lead-free piezoceramics, Ceramics International 45(4) (2019) 4880-4885. [91] Z.C. Eckel, C. Zhou, J.H. Martin, A.J. Jacobsen, W.B. Carter, T.A. Schaedler, Additive manufacturing of polymer-derived ceramics, Science 351(6268) (2016) 58-62. [92] M. Wang, C. Xie, R. He, G. Ding, K. Zhang, G. Wang, D. Fang, Polymer-derived silicon nitride ceramics by digital light processing based additive manufacturing, Journal of the American Ceramic Society 102(9) (2019) 5117-5126. [93] J. Schmidt, P. Colombo, Digital light processing of ceramic components from polysiloxanes, Journal of the European Ceramic Society 38(1) (2018) 57-66. [94] J. Schmidt, A.A. Altun, M. Schwentenwein, P. Colombo, Complex mullite structures fabricated via digital light processing of a preceramic polysiloxane with active alumina fillers, Journal of the European Ceramic Society 39(4) (2019) 1336-1343. [95] M. Hatzenbichler, M. Geppert, S. Gruber, E. Ipp, R. Almedal, J. Stampfl, DLP-based light engines for additive manufacturing of ceramic parts, SPIE2012. [96] H.O.T. Ware, C. Sun, Method for attaining dimensionally accurate conditions for high-resolution three-dimensional printing ceramic composite structures using microclip process, Journal of Micro and Nano-Manufacturing 7(3) (2019). [97] A. Galatas, H. Hassanin, Y. Zweiri, L. Seneviratne, Additive Manufactured Sandwich Composite/ABS Parts for Unmanned Aerial Vehicle Applications, Polymers 10(11) (2018) 1262. [98] H. Klippstein, A. Diaz De Cerio Sanchez, H. Hassanin, Y. Zweiri, L. Seneviratne, Fused Deposition Modeling for Unmanned Aerial Vehicles (UAVs): A Review, Advanced Engineering Materials 20(2) (2018) 1700552. [99] W. Huang, X. Zhang, Q. Wu, B. Wu, Fabrication of HA/ß-TCP scaffolds based on micro-syringe extrusion system, Rapid Prototyping Journal 19(5) (2013) 319-326. [100] K. Cai, B. Román-Manso, J.E. Smay, J. Zhou, M.I. Osendi, M. Belmonte, P. Miranzo, Geometrically complex silicon carbide structures fabricated by robocasting, Journal of the American Ceramic Society 95(8) (2012) 2660-2666. [101] M. Touri, F. Moztarzadeh, N.A.A. Osman, M.M. Dehghan, M. Mozafari, Optimisation and biological activities of bioceramic robocast scaffolds provided with an oxygen-releasing coating for bone tissue engineering applications, Ceramics International 45(1) (2019) 805-816. [102] P. Colombo, J. Schmidt, G. Franchin, A. Zocca, J. Günster, Additive manufacturing techniques for fabricating complex ceramic components from preceramic polymers, American Ceramic Society Bulletin 96 (2017) 16-23. [103] M.A. El-Sayed, K. Essa, M. Ghazy, H. Hassanin, Design optimization of additively manufactured titanium lattice structures for biomedical implants, The International Journal of Advanced Manufacturing Technology (2020). [104] H. Hassanin, A.A. Al-Kinani, A. ElShaer, E. Polycarpou, M.A. El-Sayed, K. Essa, Stainless steel with tailored porosity using canister-free hot isostatic pressing for improved osseointegration implants, Journal of Materials Chemistry B 5(47) (2017) 9384-9394. [105] A. Tolipov, A. Elghawail, M. Abosaf, D. Pham, H. Hassanin, K. Essa, Multipoint forming using mesh-type elastic cushion: modelling and experimentation, The International Journal of Advanced Manufacturing Technology 103(5) (2019) 2079-2090. [106] H. Hassanin, Y. Alkendi, M. Elsayed, K. Essa, Y. Zweiri, Controlling the Properties of Additively Manufactured Cellular Structures Using Machine Learning Approaches, Advanced Engineering Materials 22(3) (2020) 1901338. [107] S.C. Cox, P. Jamshidi, N.M. Eisenstein, M.A. Webber, H. Hassanin, M.M. Attallah, D.E.T. Shepherd, O. Addison, L.M. Grover, Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants, Materials Science and Engineering: C 64 (2016) 407-415. [108] K. Essa, R. Khan, H. Hassanin, M.M. Attallah, R. Reed, An iterative approach of hot isostatic pressing tooling design for net-shape IN718 superalloy parts, The International Journal of Advanced Manufacturing Technology 83(9) (2016) 1835-1845. [109] P. Regenfuss, Principles of laser micro sintering, Rapid Prototyping Journal 13(4) (2007) 204-212. [110] T. Petsch, P. Regenfuß, R. Ebert, L. Hartwig, S. Klötzer, T. Brabant, H. Exner, Industrial laser micro sintering, ICALEO 2004 - 23rd International Congress on Applications of Laser and Electro-Optics, Congress Proceedings, 2004. [111] J. Chen, J. Yang, T. Zuo, Micro Fabrication with Selective Laser Micro Sintering, 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2006, pp. 426-429. [112] A. Streek, P. Regenfuß, T. Süß, R. Ebert, H. Exner, Laser micro sintering of SiO2 with an NIR-laser, SPIE2008. [113] K. Essa, H. Hassanin, M.M. Attallah, N.J. Adkins, A.J. Musker, G.T. Roberts, N. Tenev, M. Smith, Development and testing of an additively manufactured monolithic catalyst bed for HTP thruster applications, Applied Catalysis A: General 542 (2017) 125-135. [114] H. Windsheimer, N. Travitzky, A. Hofenauer, P. Greil, Laminated Object Manufacturing of Preceramic-Paper-Derived Si?SiC Composites, Advanced Materials 19(24) (2007) 4515-4519. [115] A. Shama, Study of Microfluidic Mixing and Droplet Generation for 3D Printing of Nuclear Fuels, 2017. [116] B. Derby, Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution, 2010, pp. 395-414. [117] B. Derby, Materials opportunities in layered manufacturing technology, Journal of Materials Science 37 (2002) 3091-3092. [118] X. Zhao†, J.R.G. Evans, M.J. Edirisinghe, J.-H. Song, Direct Ink-Jet Printing of Vertical Walls, Journal of the American Ceramic Society 85(8) (2002) 2113-2115. [119] S. Hill, Micromoulding - a small injection of technology, Materials World 9(6) (2001) 24-25. [120] C.A. Griffiths, S.S. Dimov, E.B. Brousseau, R.T. Hoyle, The effects of tool surface quality in micro-injection moulding, Journal of Materials Processing Technology 189(1-3) (2007) 418-427. [121] V.N. Stone, S.J. Baldock, L.A. Croasdell, L.A. Dillon, P.R. Fielden, N.J. Goddard, C.L.P. Thomas, B.J.T. Brown, Free flow isotachophoresis in an injection moulded miniaturised separation chamber with integrated electrodes, Journal of Chromatography A 1155(2) (2007) 199-205. [122] S.D.J. Hill, K.P. Kamper, U. Dasbach, J. Dopper, W. Erhfeld, M. Kaupert, An investigation of computer modelling for micro-injection moulding, Simulation and Design of Microsystems and Microstructures, Southampton, 1995, pp. 275-283. [123] Z.Y. Liu, N.H. Loh, S.B. Tor, K.A. Khor, Y. Murakoshi, R. Maeda, T. Shimizu, Micro-powder injection molding, Journal of Materials Processing Technology 127(2) (2002) 165-168. [124] N.H. Loh, S.B. Tor, B.Y. Tay, Y. Murakoshi, R. Maeda, Fabrication of micro gear by micro powder injection molding, Microsystem Technologies 14 (2008) 43-50. [125] A. Michrafy, J.A. Dodds, M.S. Kadiri, Wall friction in the compaction of pharmaceutical powders: measurement and effect on the density distribution, Powder Technology 148 (2004) 53-5. [126] S.C. Lee, K.T. Kim, A study on the Cap model for metal and ceramic powder under cold compaction, Materials Science and Engineering A 445-446 (2007) 163-169. [127] V. Piotter, K. Plewa, T. Müller, A. Ruh, E. Vorster, H. Ritzhaupt-Kleissl, J. Hausselt, Manufacturing of High-Grade Micro Components by Powder Injection Molding, Key Engineering Materials 447-448 (2010) 351-355. [128] U.M. Attia, J.R. Alcock, Fabrication of ceramic micro-scale hollow components by micro-powder injection moulding, Journal of the European Ceramic Society 32(6) (2012) 1199-1204. [129] J.H. Yoo, W. Gao, Near-net ceramic micro-tubes fabricated by electrophoretic deposition process, International Journal of Modern Physics B 17(8-9) (2003) 1147-1151. [130] P. Sarkar, O. Prakash, G. Wang, R. Nicholson, Micro-laminate ceramic/ceramic composites (ysz/aizoq) by electrophoretic deposition, 18th Annual Conference on Composites and Advanced Ceramic Materials, John Wiley & Sons, Cocoa Beach, 2009, p. 1019. [131] H. Von Both, M. Dauscher, J. Haußelt, Fabrication of microstructured ceramics by electrophoretic deposition of optimized suspensions, 28th International Conference on Advanced Ceramics and Composites Cocoa Beach, 2004, pp. 135-140. [132] S. Bonnas, H.-J. Ritzhaupt-Kleissl, J. Hausselt, Electrophoretic deposition for fabrication of ceramic microparts, Journal of the European Ceramic Society 30(5) (2010) 1159-1162. [133] J. Laubersheimer, H.J. Ritzhaupt-Kleissl, J. Hausselt, G. Emig, Electrophoretic deposition of sol-gel ceramic microcomponents using UV-curable alkoxide precursors, Journal of the European Ceramic Society 18(3) (1998) 255-260. [134] A.C. Zaman, C.B. Üstündağ, N. Kuşkonmaz, F. Kaya, C. Kaya, 3-D micro-ceramic components from hydrothermally processed carbon nanotube–boehmite powders by electrophoretic deposition, Ceramics International 36(5) (2010) 1703-1710. [135] J. Kastyl, Z. Chlup, F. Clemens, M. Trunec, Ceramic core–shell composites with modified mechanical properties prepared by thermoplastic co-extrusion, Journal of the European Ceramic Society 35(10) (2015) 2873-2881. [136] A.M. Soydan, Ö. Yıldız, O.Y. Akduman, R. Akdeniz, A new approach for production of anode microtubes as solid oxide fuel cell support, Ceramics International 44(18) (2018) 23001-23007. [137] K. Sharmin, I. Schoegl, Optimization of binder removal for ceramic microfabrication via polymer co-extrusion, Ceramics International 40(3) (2014) 3939-3946. [138] K. Sharmin, I. Schoegl, Processing and analysis of ceramic mesoscale combustors fabricated by co-extrusion, ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 2013. [139] J. Powell, S. Blackburn, Co-extrusion of multilayered ceramic micro-tubes for use as solid oxide fuel cells, Journal of the European Ceramic Society 30(14) (2010) 2859-2870. [140] P.W. Alexander, D. Brei, J.W. Halloran, DEPP functionally graded piezoceramics via micro-fabrication by co-extrusion, Journal of Materials Science 42(14) (2007) 5805-5814. [141] C. Van Hoy, A. Barda, M. Griffith, J.W. Halloran, Microfabrication of ceramics by co-extrusion, Journal of the American Ceramic Society 81(1) (1998) 152-158. [142] H. Hassanin, K. Jiang, Net shape manufacturing of ceramic micro parts with tailored graded layers, Journal of Micromechanics and Microengineering 24(1) (2013) 015018. [143] S. Brittain, K. Paul, X.-M. Zhao, G. Whitesides, Soft lithography and microfabrication, Physics World 11(5) (1998) 31. [144] Y. Xia, G.M. Whitesides, Soft lithography, Annual Review of Materials Science 28(1) (1998) 153-184. [145] J.A. Rogers, R.G. Nuzzo, Recent progress in soft lithography, Materials Today 8(2) (2005) 50-56. [146] M. Brehmer, L. Conrad, L. Funk, New developments in soft lithography, Journal of Dispersion Science and Technology 24(3-4) (2003) 291-304. [147] T.W. Harris, Chemical Milling, Clarendon Press, Oxford, 1976. [148] W. Wang, S.A. Soper, BioMEMS : technologies and applications, CRC Press,Taylor & Francis Group, LLC, London, 2007. [149] J.N. Helbert, Handbook of VLSI microlithography, William Andrew Publishing, LLC, Norwich, New York, U.S.A., 2001. [150] H. Lorenz, M. Despont, N. Fahrnl, N. LaBianca, P. Renaud, P. Vettiger, SU-8: a low-cost negative resist for MEMS, Seventh Workshop on Micromachining, Micromechanics and Microsystems in Europe, UK, 1997, pp. 121-4. [151] A. Mata, A.J. Fleischman, S. Roy, Fabrication of multi-layer SU-8 microstructures, Journal of Micromechanics and Microengineering 16 (2006) 276-84. [152] S. Roth, L. Dellmann, G.A. Racine, N.F. de Rooij, High aspect ratio UV photolithography for electroplated structures, Journal of Micromechanics and Microengineering 9 (1999) 105-8. [153] W. Bauer, R. Knitter, A. Emde, G. Bartelt, D. Gohring, E. Hansjosten, Replication techniques for ceramic microcomponents with high aspect ratios, Microsystem Technologies 9 (2002) 81-6. [154] Z. Dou, S. Bo, T.W. Button, Microfabrication of three-dimensional, free-standing ceramic MEMS components by soft moulding, Advanced Engineering Materials 5 (2003) 924-7. [155] Z. Dou, B. Su, T.W. Button, Preparation of concentrated aqueous alumina suspensions for soft-molding microfabrication, 8th International Conference on Ceramic Processing, UK, 2004, pp. 231-7. [156] K. Jung-Sik, K. Jiang, I. Chang, A net shape process for metallic microcomponent fabrication using Al and Cu micro/nano powders, Journal of Micromechanics and Microengineering 16 (2006) 48-52. [157] M. Imbaby, K. Jiang, I. Chang, Fabrication of 316-L stainless steel micro parts by softlithography and powder metallurgy, Materials Letters 62(26) (2008) 4213-4216. [158] H. Hassanin, K. Jiang, Multiple replication of thick PDMS micropatterns using surfactants as release agents, Microelectronic Engineering 88(11) (2011) 3275-3277. [159] M. Heule, U.P. Schönholzer, L.J. Gauckler, Patterning colloidal suspensions by selective wetting of microcontact-printed surfaces, Journal of the European Ceramic Society 24(9) (2004) 2733-2739. [160] J.H. Lee, M.H. Hon, Y.W. Chung, I.C. Leu, Microcontact Printing of Organic Self‐Assembled Monolayers for Patterned Growth of Well‐Aligned ZnO Nanorod Arrays and their Field‐Emission Properties, Journal of the American Ceramic Society 92(10) (2009) 2192-2196. [161] H. Nagata, S.W. Ko, E. Hong, C.A. Randall, S. Trolier‐McKinstry, P. Pinceloup, D. Skamser, M. Randall, A. Tajuddin, Microcontact printed BaTiO3 and LaNiO3 thin films for capacitors, Journal of the American Ceramic Society 89(9) (2006) 2816-2821. [162] X.M. Zhao, Y. Xia, G.M. Whitesides, Fabrication of three‐dimensional micro‐structures: Microtransfer molding, Advanced Materials 8(10) (1996) 837-840. [163] D. Zhang, B. Su, T.W. Button, Preparation of concentrated aqueous alumina suspensions for soft-molding microfabrication, Journal of the European Ceramic Society 24(2) (2004) 231-237. [164] J. Moon, C. Kang, S. Cho, Microtransfer molding of gelcasting suspensions to fabricate barrier ribs for plasma display panel, Journal of the American Ceramic Society 86(11) (2003) 1969-1972. [165] M. Heule, J. Schell, L.J. Gauckler, Powder‐Based Tin Oxide Microcomponents on Silicon Substrates Fabricated by Micromolding in Capillaries, Journal of the American Ceramic Society 86(3) (2003) 407-12. [166] M. Heule, L.J. Gauckler, Gas sensors fabricated from ceramic suspensions by micromolding in capillaries, Advanced Materials 13(23) (2001) 1790-1793. [167] W.S. Beh, Y. Xia, D. Qin, Formation of patterned microstructures of polycrystalline ceramics from precursor polymers using micromolding in capillaries, Journal of Materials Research 14(10) (1999) 3995-4003. [168] P. Obreja, D. Cristea, A. Dinescu, R. Gavrila, Replica molding of polymeric components for microsystems, 2009 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS, Rome, 2009. [169] R. Mukherjee, G.K. Patil, A. Sharma, Solvent vapor-assisted imprinting of polymer films coated on curved surfaces with flexible PVA stamps, Industrial & Engineering Chemistry Research 48(19) (2009) 8812-8818. [170] J.R. Lawrence, G.A. Turnbull, I.D. Samuel, Polymer laser fabricated by a simple micromolding process, Applied Physics Letters 82(23) (2003) 4023-4025. [171] U.P. Schonholzer, L.J. Gauckler, Ceramic parts patterned in the micrometer range, Advanced Materials 11 (1999) 630-2. [172] U.P. Schonholzer, R. Hummel, L.J. Gauckler, Microfabrication of ceramics by filling of photoresist molds, Advanced Materials 12 (2000) 1261-3. [173] H. Hassanin, K. Jiang, Fabrication and characterization of stabilised zirconia micro parts via slip casting and soft moulding, Scripta Materialia 69(6) (2013) 433-436. [174] Z. Zhu, H. Hassanin, K. Jiang, A soft moulding process for manufacture of net-shape ceramic microcomponents, The International Journal of Advanced Manufacturing Technology 47(1-4) (2010) 147-152. [175] H. Hassanin, H. Ostadi, K. Jiang, Surface roughness and geometrical characterization of ultra-thick micro moulds for ceramic micro fabrication using soft lithography, The International Journal of Advanced Manufacturing Technology 67(9-12) (2013) 2293-2300. [176] H. Hassanin, K. Jiang, Net shape manufacturing of ceramic micro parts with tailored graded layers, Journal of Micromechanics and Microengineering 24(1) (2014). [177] H. Hassanin, K. Jiang, Infiltration-processed, functionally graded materials for microceramic componenets, IEEE 23rd International Conference on The Micro Electro Mechanical Systems (MEMS). 2010, pp. 368-371. [178] V. Piotter, W. Bauer, R. Knitter, M. Mueller, T. Mueller, K. Plewa, Powder injection moulding of metallic and ceramic micro parts, Microsystem Technologies 17(2) (2011) 251. [179] I. Corni, M.P. Ryan, A.R. Boccaccini, Electrophoretic deposition: From traditional ceramics to nanotechnology, Journal of the European Ceramic Society 28(7) (2008) 1353-1367. [180] J.E. ten Elshof, S.U. Khan, O.F. Göbel, Micrometer and nanometer-scale parallel patterning of ceramic and organic–inorganic hybrid materials, Journal of the European Ceramic Society 30(7) (2010) 1555-1577. [181] Y.F. Chang, Q.R. Chou, J.Y. Lin, C.H. Lee, Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique, Applied Physics A (Materials Science Processing) (2007) 193-6. [182] A. Sammak, S. Azimi, N. Izadi, B.K. Hosseinieh, S. Mohajerzadeh, Deep vertical etching of silicon wafers using a hydrogenation-assisted reactive ion etching, Journal of Microelectromechanical Systems 16(4) (2007) 912-918. [183] S. Liu, B. Guillet, C. Adamo, V.M. Nascimento, S. Lebargy, G. Brasse, F. Lemarié, J. El Fallah, D.G. Schlom, L. Méchin, Free-standing La0.7Sr0.3MnO3 suspended micro-bridges on buffered silicon substrates showing undegraded low frequency noise properties, Journal of Micromechanics and Microengineering 29(6) (2019) 065008. [184] J. Zhang, W. Ren, X. Jing, P. Shi, X. Wu, Deep reactive ion etching of PZT ceramics and PMN-PT single crystals for high frequency ultrasound transducers, Ceramics International 41 (2015) S656-S661. [185] H.M. Chow, B.H. Yan, F.Y. Huang, Micro slit machining using electro-discharge machining with a modified rotary disk electrode (RDE), Journal of Materials Processing Technology 91(1) (1999) 161-166. [186] F.-T. Weng, R.F. Shyu, C.-S. Hsu, Fabrication of micro-electrodes by multi-EDM grinding process, Journal of Materials Processing Technology 140 (2003) 332-334. [187] C. Shun-Tong, Fabrication of high-density micro holes by upward batch micro EDM, Journal of Micromechanics and Microengineering 18 (2008) 085002 (9 pp.). [188] K. Egashira, K. Mizutani, Micro-drilling of monocrystalline silicon using a cutting tool, Precision Engineering 26(3) (2002) 263-268. [189] R. Phatthanakun, P. Songsiriritthigul, P. Klysubun, N. Chomnawang, Multi-step powder casting and X-ray lithography of SU-8 resist for complicated 3D microstructures, 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology IEEE, Piscataway, NJ, USA, 2008, pp. 805-8. [190] K.K. Saxena, S. Agarwal, S.K. Khare, Surface Characterization, Material Removal Mechanism and Material Migration Study of Micro EDM Process on Conductive SiC, Procedia CIRP 42 (2016) 179-184. [191] N. Ojha, F. Zeller, C. Mueller, H. Reinecke, Comparative study on parametric analysis of μedm of non-conductive ceramics, Key Engineering Materials, 2014, pp. 693-700. [192] H. Zhang, Y. Liu, J. Chen, R. Shen, B. Cai, D. Wang, Experimental research on pulse generator for EDM of non-conductive ceramics, Key Engineering Materials, 2009, pp. 649-653. [193] K. Pallav, K.F. Ehmann, Feasibility of Laser Induced Plasma Micro-machining (LIP-MM), in: S. Ratchev (Ed.) Precision Assembly Technologies and Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 73-80. [194] C. Jimin, Y. Yuehua, Laser micro-fabrication in RF MEMS switches, 2009 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Sciences Meeting, ANTEM/URSI 2009, February 15, 2009 - February 18, 2009, Inst. of Elec. and Elec. Eng. Computer Society, Banff, AB, Canada, 2009. [195] M.S. Amer, L. Dosser, S. LeClair, J.F. Maguire, Induced stresses and structural changes in silicon wafers as a result of laser micro-machining, Applied Surface Science 187 (2002) 291-6. [196] M.S. Amer, M.A. El-Ashry, L.R. Dosser, K.E. Hix, J.F. Maguire, B. Irwin, Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers, Applied Surface Science 242 (2005) 162-7. [197] L. Rihakova, H. Chmelickova, Laser micromachining of glass, silicon, and ceramics, Advances in Materials Science and Engineering 2015 (2015). [198] M.R.H. Knowles, G. Rutterford, D. Karnakis, T. Dobrev, P. Petkov, S. Dimov, Laser micro-milling of ceramics, dielectrics and metals using nanosecond and picosecond lasers, in: W. Menz, S. Dimov, B. Fillon (Eds.), 4M 2006 - Second International Conference on Multi-Material Micro Manufacture, Elsevier, Oxford, 2006, pp. 131-134. [199] S.H. Kim, T. Balasubramani, I.-B. Sohn, Y.-C. Noh, J. Lee, J. Lee, S. Jeong, Precision microfabrication of AlN and Al2O3 ceramics by femtosecond laser ablation - art. no. 68791O, Proc SPIE 6879 (2008). [200] E. Kacar, M. Mutlu, E. Akman, A. Demir, L. Candan, T. Canel, V. Gunay, T. Sınmazcelik, Characterization of the drilling alumina ceramic using Nd:YAG pulsed laser, Journal of Materials Processing Technology 209(4) (2009) 2008-2014. [201] E. Ferraris, J. Vleugels, M. Galbiati, B. Lauwers, D. Reynaerts, Investigation of micro electrical discharge machining (EDM) performance of TiB2, 16th International Symposium on Electromachining, ISEM 2010, 2010, pp. 555-560. [202] T. Wohlers, T. Caffrey, R.I. Campbell, O. Diegel, J. Kowen, Wohlers Report 2018: 3D Printing and Additive Manufacturing State of the Industry; Annual Worldwide Progress Report, Wohlers Associates2018. [203] T. Caffrey, Wohlers Report 2015: Additive Manufacturing and 3D Printing, State of the Industry, Ft. Collins, CO: Wohlers Associates (2015). [204] A. Licciulli, C.E. Corcione, A. Greco, V. Amicarelli, A. Maffezzoli, Laser stereolithography of ZrO 2 toughened Al 2 O 3, Journal of The European Ceramic Society 25(9) (2005) 1581-1589. |
---|