Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: A review

Journal article


Hassanin, H., Bidare, P., Jiménez, A. and Essa, K. 2021. Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: A review. Advances in Manufacturing.
AuthorsHassanin, H., Bidare, P., Jiménez, A. and Essa, K.
Abstract

Additive manufacturing (AM) technologies are currently employed for the manufacturing of completely functional parts and have gained the attention of high-technology industries such as the aerospace, automotive, and biomedical fields. This is mainly due to their advantages in terms of low material waste and high productivity, particularly owing to the flexibility in the geometries that can be generated. In the tooling industry, specifically the manufacturing of dies and molds, AM technologies enable the generation of complex shapes, internal cooling channels, the repair of damaged dies and molds, and an improved performance of dies and molds employing multiple AM materials. In the present paper, a review of AM processes and materials applied in the tooling industry for the generation of dies and molds is addressed. AM technologies used for tooling applications and the characteristics of the materials employed in this industry are first presented. In addition, the most relevant state-of-the-art approaches are analyzed with respect to the process parameters and microstructural and mechanical properties in the processing of high-performance tooling materials used in AM processes. Concretely, studies on the additive manufacturing of ferrous (maraging steels and H13 steel alloy) and non-ferrous (Stellite alloys and WC alloys) tooling alloys are also analyzed.

KeywordsAdditive manufacturing; Tooling alloys; Super alloys; Hybrid manufacturing; Post processing
Year2021
JournalAdvances in Manufacturing
PublisherSpringer Nature
ISSN2195-3597
2095-3127
Publication process dates
Deposited07 Jul 2021
Accepted05 Jul 2021
Accepted author manuscript
Output statusIn press
References

[1] M. Merklein, D. Junker, A. Schaub, and F. Neubauer, “Hybrid additive manufacturing technologies - An analysis regarding potentials and applications,” Phys. Procedia, vol. 83, pp. 549–559, 2016, doi: 10.1016/j.phpro.2016.08.057.
[2] K. Essa et al., “Development and testing of an additively manufactured monolithic catalyst bed for HTP thruster applications,” Appl. Catal. A Gen., vol. 542, no. February, pp. 125–135, 2017, doi: 10.1016/j.apcata.2017.05.019.
[3] H. B. A. Sabouri, A.K. Yetisen, R. Sadigzade, H. Hassanin, K. Essa, “Three-Dimensional Microstructured Lattices for Oil Sensing,” Energy & Fuels, vol. 31, 3, pp. 2524–2529, 2017.
[4] S. Li, H. Hassanin, M. M. Attallah, N. J. E. Adkins, and K. Essa, “The development of TiNi-based negative Poisson’s ratio structure using selective laser melting,” Acta Mater., vol. 105, pp. 75–83, 2016, doi: 10.1016/j.actamat.2015.12.017.
[5] H. Hassanin, Y. Alkendi, M. Elsayed, K. Essa, and Y. Zweiri, “Controlling the Properties of Additively Manufactured Cellular Structures Using Machine Learning Approaches,” Adv. Eng. Mater., vol. 22, no. 3, pp. 1–9, 2020, doi: 10.1002/adem.201901338.
[6] H. Hassanin et al., “Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channels,” Addit. Manuf., vol. 20, no. January, pp. 144–155, 2018, doi: 10.1016/j.addma.2018.01.005.
[7] E. Yasa, O. Poyraz, N. Cizioglu, and S. Pilatin, “Repair and Manufacturing of High Performance Tools by Additive Manufacturing,” Des. Prod. Mach. DIES/MOLDS, no. June 2015, pp. 245–251, 2018.
[8] P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, and E. A. Jägle, “Steels in additive manufacturing: A review of their microstructure and properties,” Mater. Sci. Eng. A, vol. 772, no. October 2019, 2020, doi: 10.1016/j.msea.2019.138633.
[9] M. Mazur, M. Leary, M. McMillan, J. Elambasseril, and M. Brandt, “SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices,” Rapid Prototyp. J., vol. 22, no. 3, pp. 504–518, 2016, doi: 10.1108/RPJ-06-2014-0075.
[10] A. Y. C. Nee, Handbook of manufacturing engineering and technology. 2015.
[11] M. Shah, L. Unanue, P. Bidare, U. Galfarsoro, K. P. Iriarte Luis Maand Karunakaran, and P. J. Arrazola, “Tool control monitoring applied to drilling,” Proc. 6th MUGV Conf. Cluny, Fr., pp. 1–10, 2010.
[12] J. P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, “Selective laser melting of iron-based powder,” J. Mater. Process. Technol., vol. 149, no. 1–3, pp. 616–622, 2004, doi: 10.1016/j.jmatprotec.2003.11.051.
[13] W. E. Frazier, “Metal additive manufacturing: A review,” J. Mater. Eng. Perform., vol. 23, no. 6, pp. 1917–1928, 2014, doi: 10.1007/s11665-014-0958-z.
[14] C. Selcuk, “Laser metal deposition for powder metallurgy parts,” Powder Metall., vol. 54, no. 2, pp. 94–99, 2011, doi: 10.1179/174329011X12977874589924.
[15] 3dhubs, “Producing Metal Parts - CNC vs. Additive Manufacturing.”
[16] G. Manogharan, R. Wysk, O. Harrysson, and R. Aman, “AIMS - A Metal Additive-hybrid Manufacturing System: System Architecture and Attributes,” Procedia Manuf., vol. 1, pp. 273–286, 2015, doi: 10.1016/j.promfg.2015.09.021.
[17] S. A. M. Tofail, E. P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, and C. Charitidis, “Additive manufacturing: scientific and technological challenges, market uptake and opportunities,” Mater. Today, vol. 21, no. 1, pp. 22–37, 2018, doi: 10.1016/j.mattod.2017.07.001.
[18] “About Additive Manufacturing -Directed Energy Deposition.” https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditive... (accessed Mar. 13, 2020).
[19] A. M. R. W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, “Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges,” Appl. Phys. Rev. 2, p. 41304, 2015.
[20] S. Das, “Physical Aspects of Process Control in Selective Laser Sintering of Metals,” Adv. Eng. Mater., vol. 5, no. 10, pp. 701–711, 2003, doi: 10.1002/adem.200310099.
[21] M. Talib Mohammed, “Mechanical properties of SLM-Titanium materials for biomedical applications: A review,” Mater. Today Proc., vol. 5, no. 9, pp. 17906–17913, 2018, doi: 10.1016/j.matpr.2018.06.119.
[22] S. Igor, Aerospace applications of the SLM process of functional and functional graded metal matrix composites based on NiCr superalloys, vol. c. Elsevier Inc., 2019.
[23] A. Jiménez, P. Bidare, H. Hassanin, F. Tarlochan, S. Dimov, and K. Essa, “Powder-based Laser Hybrid Additive Manufacturing of Metals: A Review,” Submitt. to Int. J. Adv. Manuf. Technol., 2020.
[24] D. D. Gu, W. Meiners, K. Wissenbach, and processes and mechanisms Poprawe, R.Laser additive manufacturing of metallic components: Materials, “Laser additive manufacturing of metallic components: Materials, processes and mechanisms,” Int. Mater. Rev., vol. 57, no. 3, pp. 133–164, 2012, doi: 10.1179/1743280411Y.0000000014.
[25] E. Liverani, S. Toschi, L. Ceschini, and A. Fortunato, “Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel,” J. Mater. Process. Technol., vol. 249, no. November 2016, pp. 255–263, 2017, doi: 10.1016/j.jmatprotec.2017.05.042.
[26] N. Read, W. Wang, K. Essa, and M. M. Attallah, “Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development,” Mater. Des., vol. 65, pp. 417–424, 2015, doi: 10.1016/j.matdes.2014.09.044.
[27] P. Bidare, R. R. J. Maier, R. J. Beck, J. D. Shephard, and A. J. Moore, “An open-architecture metal powder bed fusion system for in-situ process measurements,” Addit. Manuf., vol. 16, pp. 177–185, 2017, doi: 10.1016/j.addma.2017.06.007.
[28] P. Bidare, I. Bitharas, R. M. Ward, M. M. Attallah, and A. J. Moore, “Fluid and particle dynamics in laser powder bed fusion,” Acta Mater., vol. 142, pp. 107–120, 2018, doi: 10.1016/j.actamat.2017.09.051.
[29] B. Ferrar, L. Mullen, E. Jones, R. Stamp, and C. J. Sutcliffe, “Gas flow effects on selective laser melting (SLM) manufacturing performance,” J. Mater. Process. Technol., vol. 212, no. 2, pp. 355–364, 2012, doi: 10.1016/j.jmatprotec.2011.09.020.
[30] M. Seabra et al., “Selective laser melting (SLM) and topology optimization for lighter aerospace componentes,” Procedia Struct. Integr., vol. 1, pp. 289–296, 2016, doi: 10.1016/j.prostr.2016.02.039.
[31] L. Tang, C. Wu, Z. Zhang, J. Shang, and C. Yan, “A lightweight structure redesign method based on selective laser melting,” Metals (Basel)., vol. 6, no. 11, 2016, doi: 10.3390/met6110280.
[32] “RenAM 500Q multi-laser AM system,” Renishaw PLC, 2017. https://resources.renishaw.com/en/details/data-sheet-renam-500q--990... (accessed Mar. 17, 2020).
[33] C. Qiu, N. J. E. Adkins, H. Hassanin, M. M. Attallah, and K. Essa, “In-situ shelling via selective laser melting: Modelling and microstructural characterisation,” Mater. Des., vol. 87, pp. 845–853, 2015, doi: 10.1016/j.matdes.2015.08.091.
[34] H. Hassanin, K. Essa, C. Qiu, A. M. Abdelhafeez, N. J. E. Adkins, and M. M. Attallah, “Net-shape manufacturing using hybrid selective laser melting/hot isostatic pressing,” Rapid Prototyp. J., vol. 23, no. 4, pp. 720–726, 2017, doi: 10.1108/RPJ-02-2016-0019.
[35] “MetalFAB1,” Additive Industries, 2015. https://www.additiveindustries.com/systems/metalfab1 (accessed Mar. 17, 2020).
[36] P. Bidare, I. Bitharas, R. M. Ward, M. M. Attallah, and A. J. Moore, “Laser powder bed fusion at sub-atmospheric pressures,” Int. J. Mach. Tools Manuf., vol. 130–131, no. April, pp. 65–72, 2018, doi: 10.1016/j.ijmachtools.2018.03.007.
[37] P. Bidare, I. Bitharas, R. M. Ward, M. M. Attallah, and A. J. Moore, “Laser powder bed fusion in high-pressure atmospheres,” Int. J. Adv. Manuf. Technol., vol. 99, no. 1–4, pp. 543–555, 2018, doi: 10.1007/s00170-018-2495-7.
[38] “Concept Laser,” GE Additive, 2015. https://www.ge.com/additive/de/who-we-are/concept-laser (accessed Apr. 06, 2020).
[39] “EOSTATE Monitoring and Quality Assurance - Real-time monitoring for industrial 3D printing,” eos, 2017. https://www.eos.info/software/monitoring-software (accessed Apr. 06, 2020).
[40] H. K. P. Graff, B. Ståhlbom, E. Nordenberg, A. Graichen, P. Johansson, “Evaluating Measuring Techniques for Occupational Exposure during Additive Manufacturing of Metals: A Pilot Study,” J. Ind. Ecol., vol. 0, pp. 1–10, 2016.
[41] I. Yadroitsev, P. Bertrand, and I. Smurov, “Parametric analysis of the selective laser melting process,” Appl. Surf. Sci., vol. 253, no. 19, pp. 8064–8069, 2007, doi: 10.1016/j.apsusc.2007.02.088.
[42] P. E. K.A. Mumtaz, N. Hopkinson, “High Density Selective Laser Melting of Waspaloy,” vol. 195, pp. 220–232, 2006.
[43] A. B. Spierings, N. Herres, and G. Levy, “Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts,” Rapid Prototyp. J., vol. 17, no. 3, pp. 195–202, 2011, doi: 10.1108/13552541111124770.
[44] B. Liu, R. Wildman, C. Tuck, I. Ashcroft, and R. Hague, “Investigation the effect of particle size distribution on processing parameters optimisation in selective laser melting process,” 22nd Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2011, no. January 2015, pp. 227–238, 2011.
[45] I. Yadroitsev, L. Thivillon, P. Bertrand, and I. Smurov, “Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder,” Appl. Surf. Sci., vol. 254, no. 4, pp. 980–983, 2007, doi: 10.1016/j.apsusc.2007.08.046.
[46] R. H. M. Simonelli, C. Tuck, N.T. Aboulkhair, I. Maskery, I. Ashcroft, R.D. Wildman, “A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V,” Met. Mater. Trans. A., vol. 46, pp. 3842–3851, 2015.
[47] W. E. King et al., “Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges,” Appl. Phys. Rev., vol. 2, no. 4, p. 41304, 2015, doi: 10.1063/1.4937809.
[48] S. M. Thompson, L. Bian, N. Shamsaei, and A. Yadollahi, “An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics,” Addit. Manuf., vol. 8, pp. 36–62, 2015, doi: 10.1016/j.addma.2015.07.001.
[49] K. Löffler, “Developments in disk laser welding,” Handb. Laser Weld. Technol., pp. 73–102, 2013, doi: 10.1533/9780857098771.1.73.
[50] T. Petrat, C. Brunner-Schwer, B. Graf, and M. Rethmeier, “Microstructure of Inconel 718 parts with constant mass energy input manufactured with direct energy deposition,” Procedia Manuf., vol. 36, pp. 256–266, 2019, doi: 10.1016/j.promfg.2019.08.033.
[51] B. Bax, R. Rajput, R. Kellet, and M. Reisacher, “Systematic evaluation of process parameter maps for laser cladding and directed energy deposition,” Addit. Manuf., vol. 21, no. June 2017, pp. 487–494, 2018, doi: 10.1016/j.addma.2018.04.002.
[52] K. L. Terrassa, T. R. Smith, S. Jiang, J. D. Sugar, and J. M. Schoenung, “Improving build quality in Directed Energy Deposition by cross-hatching,” Mater. Sci. Eng. A, vol. 765, no. August, p. 138269, 2019, doi: 10.1016/j.msea.2019.138269.
[53] “Additive Manufacturing - The integration of additive manufacturing technology and multi-tasking machining,” Mazak. https://www.mazakeu.co.uk/AM/ (accessed Apr. 08, 2020).
[54] “Laser metal deposition (LMD),” Trumpf. https://www.trumpf.com/en_GB/applications/additive-manufacturing/las... (accessed Mar. 17, 2020).
[55] A. Azarniya et al., “Additive manufacturing of Ti–6Al–4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties,” J. Alloys Compd., vol. 804, pp. 163–191, 2019, doi: 10.1016/j.jallcom.2019.04.255.
[56] A. N. Jinoop, C. P. Paul, S. K. Mishra, and K. S. Bindra, “Laser Additive Manufacturing using directed energy deposition of Inconel-718 wall structures with tailored characteristics,” Vacuum, vol. 166, no. May, pp. 270–278, 2019, doi: 10.1016/j.vacuum.2019.05.027.
[57] D. R. Liu, S. Wang, and W. Yan, “Grain structure evolution in transition-mode melting in direct energy deposition,” Mater. Des., vol. 194, p. 108919, 2020, doi: 10.1016/j.matdes.2020.108919.
[58] M. Dinovitzer, X. Chen, J. Laliberte, X. Huang, and H. Frei, “Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure,” Addit. Manuf., vol. 26, no. October 2018, pp. 138–146, 2019, doi: 10.1016/j.addma.2018.12.013.
[59] B. Wu et al., “A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement,” J. Manuf. Process., vol. 35, no. February, pp. 127–139, 2018, doi: 10.1016/j.jmapro.2018.08.001.
[60] A. R. McAndrew et al., “Interpass rolling of Ti-6Al-4V wire + arc additively manufactured features for microstructural refinement,” Addit. Manuf., vol. 21, no. December 2017, pp. 340–349, 2018, doi: 10.1016/j.addma.2018.03.006.
[61] I. Tabernero, A. Paskual, P. Álvarez, and A. Suárez, “Study on Arc Welding Processes for High Deposition Rate Additive Manufacturing,” Procedia CIRP, vol. 68, no. April, pp. 358–362, 2018, doi: 10.1016/j.procir.2017.12.095.
[62] J. L. Z. Li, M. R. Alkahari, N. A. B. Rosli, R. Hasan, M. N. Sudin, and F. R. Ramli, “Review of wire arc additive manufacturing for 3d metal printing,” Int. J. Autom. Technol., vol. 13, no. 3, pp. 346–353, 2019, doi: 10.20965/ijat.2019.p0346.
[63] D. Ding, Z. Pan, D. Cuiuri, and H. Li, “Wire-feed additive manufacturing of metal components: technologies, developments and future interests,” Int. J. Adv. Manuf. Technol., vol. 81, no. 1–4, pp. 465–481, 2015, doi: 10.1007/s00170-015-7077-3.
[64] J. L. Prado-Cerqueira, J. L. Diéguez, and A. M. Camacho, “Preliminary development of a Wire and Arc Additive Manufacturing system (WAAM),” Procedia Manuf., vol. 13, pp. 895–902, 2017, doi: 10.1016/j.promfg.2017.09.154.
[65] X. Zhang, W. Cui, W. Li, and F. Liou, “A hybrid process integrating reverse engineering, pre-repair processing, additive manufacturing, and material testing for component remanufacturing,” Materials (Basel)., vol. 12, no. 12, 2019, doi: 10.3390/ma12121961.
[66] J. Schmidt, Stable Honeycomb Structures and Temperature Based Trajectory Optimization for Wire-Arc Additive Manufacturing Georg Radow, no. January 2020. Springer US, 2019.
[67] M. Ziaee and N. B. Crane, “Binder jetting: A review of process, materials, and methods,” Addit. Manuf., vol. 28, no. June, pp. 781–801, 2019, doi: 10.1016/j.addma.2019.05.031.
[68] Y. Bai and C. B. Williams, “Binder jetting additive manufacturing with a particle-free metal ink as a binder precursor,” Mater. Des., vol. 147, pp. 146–156, 2018, doi: 10.1016/j.matdes.2018.03.027.
[69] X. Lv, F. Ye, L. Cheng, S. Fan, and Y. Liu, “Binder jetting of ceramics: Powders, binders, printing parameters, equipment, and post-treatment,” Ceram. Int., vol. 45, no. 10, pp. 12609–12624, 2019, doi: 10.1016/j.ceramint.2019.04.012.
[70] “Binder Jetting (BJ),” additively. .
[71] S. Vangapally, K. Agarwal, A. Sheldon, and S. Cai, “Effect of Lattice Design and Process Parameters on Dimensional and Mechanical Properties of Binder Jet Additively Manufactured Stainless Steel 316 for Bone Scaffolds,” Procedia Manuf., vol. 10, pp. 750–759, 2017, doi: 10.1016/j.promfg.2017.07.069.
[72] “Digital Metal - Components,” Digital Metal. .
[73] C. L. Cramer et al., “Binder jet additive manufacturing method to fabricate near net shape crack-free highly dense Fe-6.5 wt.% Si soft magnets,” Heliyon, vol. 5, no. 11, p. e02804, 2019, doi: 10.1016/j.heliyon.2019.e02804.
[74] AZoM, “Tool Steel Clasifications,” AZO Materials, 2012. https://www.azom.com/article.aspx?ArticleID=6138 (accessed May 11, 2020).
[75] E. Alizadeh, “Factors influencing the machinability of sintered steels,” Powder Metall. Met. Ceram., vol. 47, no. 5–6, pp. 304–315, 2008, doi: 10.1007/s11106-008-9021-7.
[76] W. Grzesik, “Machinability of Engineering Materials,” Adv. Mach. Process. Met. Mater., pp. 241–264, 2017, doi: 10.1016/b978-0-444-63711-6.00013-2.
[77] L. Z. Jin and R. Sandström, “Machinability data applied to materials selection,” Mater. Des., vol. 15, no. 6, pp. 339–346, 1994, doi: 10.1016/0261-3069(94)90028-0.
[78] D. O’Sullivan and M. Cotterell, “Machinability of austenitic stainless steel SS303,” J. Mater. Process. Technol., vol. 124, no. 1–2, pp. 153–159, 2002, doi: 10.1016/S0924-0136(02)00197-8.
[79] R. W. Lanz, S. N. Melkote, and M. A. Kotnis, “Machinability of rapid tooling composite board,” J. Mater. Process. Technol., vol. 127, no. 2, pp. 242–245, 2002, doi: 10.1016/S0924-0136(02)00150-4.
[80] D. G. Thakur, B. Ramamoorthy, and L. Vijayaraghavan, “Study on the machinability characteristics of superalloy Inconel 718 during high speed turning,” Mater. Des., vol. 30, no. 5, pp. 1718–1725, 2009, doi: 10.1016/j.matdes.2008.07.011.
[81] M. Benghersallah, L. Boulanouar, G. Le Coz, A. Devillez, and D. Dudzinski, “Machinability of Stellite 6 hardfacing,” EPJ Web Conf., vol. 6, pp. 5–12, 2010, doi: 10.1051/epjconf/20100602001.
[82] M. S. Hasan, A. M. Mazid, and R. Clegg, “The Basics of Stellites in Machining Perspective,” Int. J. Eng. Mater. Manuf., vol. 1, no. 2, pp. 35–50, 2016, doi: 10.26776/ijemm.01.02.2016.01.
[83] N. Sandberg, “On the Machinability of High Performance Tool Steels,” Digit. Compr. Summ. Uppsala Diss. from Fac. Sci. Technol. 927, p. 400, 2012.
[84] P. R. Zhang, Z. Q. Liu, and Y. B. Guo, “Machinability for dry turning of laser cladded parts with conventional vs. wiper insert,” J. Manuf. Process., vol. 28, pp. 494–499, 2017, doi: 10.1016/j.jmapro.2017.04.017.
[85] C. Courbon et al., “Near surface transformations of stainless steel cold spray and laser cladding deposits after turning and ball-burnishing,” Surf. Coatings Technol., vol. 371, no. August 2018, pp. 235–244, 2019, doi: 10.1016/j.surfcoat.2019.01.092.
[86] C. Wang, K. Li, M. Chen, and Z. Liu, “Evaluation of minimum quantity lubrication effects by cutting force signals in face milling of Inconel 182 overlays,” J. Clean. Prod., vol. 108, pp. 145–157, 2015, doi: 10.1016/j.jclepro.2015.06.095.
[87] J. C. Lee, H. J. Kang, W. S. Chu, and S. H. Ahn, “Repair of Damaged Mold Surface by Cold-Spray Method,” CIRP Ann. - Manuf. Technol., vol. 56, no. 1, pp. 577–580, 2007, doi: 10.1016/j.cirp.2007.05.138.
[88] S. Jhavar, C. P. Paul, and N. K. Jain, “Causes of failure and repairing options for dies and molds: A review,” Eng. Fail. Anal., vol. 34, pp. 519–535, 2013, doi: 10.1016/j.engfailanal.2013.09.006.
[89] B. Silva, I. Pires, and L. Quintino, “Welding technologies for repairing plastic injection moulds,” Mater. Sci. Forum, vol. 587–588, pp. 936–940, 2008, doi: 10.4028/www.scientific.net/msf.587-588.936.
[90] D. G. Ahn, H. J. Lee, J. R. Cho, and D. S. Guk, “Improvement of the wear resistance of hot forging dies using a locally selective deposition technology with transition layers,” CIRP Ann. - Manuf. Technol., vol. 65, no. 1, pp. 257–260, 2016, doi: 10.1016/j.cirp.2016.04.013.
[91] Ö. N. Cora and M. Koç, “Wear resistance evaluation of hard-coatings for sheet blanking die,” Procedia Manuf., vol. 15, pp. 590–596, 2018, doi: 10.1016/j.promfg.2018.07.282.
[92] D. Ratna, “Thermal properties of thermosets,” Thermosets, pp. 62–91, 2012, doi: 10.1533/9780857097637.1.62.
[93] I. Valls, A. Hamasaiid, and A. Padré, “High Thermal Conductivity and High Wear Resistance Tool Steels for cost-effective Hot Stamping Tools,” J. Phys. Conf. Ser., vol. 896, no. 1, 2017, doi: 10.1088/1742-6596/896/1/012046.
[94] M. E. Launey and R. O. Ritchie, “On the fracture toughness of advanced materials,” Adv. Mater., vol. 21, no. 20, pp. 2103–2110, 2009, doi: 10.1002/adma.200803322.
[95] D. Viale, J. Béguinot, F. Chenou, and G. Baron, “Optimizing microstructure for high toughness cold-work tool steels,” 6th Int. Tool. Conf., pp. 299–318, 2002.
[96] G. Cornacchia, M. Gelfi, M. Faccoli, and R. Roberti, “Influence of aging on microstructure and toughness of die-casting die steels,” Int. J. Microstruct. Mater. Prop., vol. 3, no. 2–3, pp. 195–205, 2008, doi: 10.1504/IJMMP.2008.018727.
[97] R. Ebara, “Fatigue crack initiation and propagation behavior of forging die steels,” Int. J. Fatigue, vol. 32, no. 5, pp. 830–840, 2010, doi: 10.1016/j.ijfatigue.2009.07.020.
[98] Y. C. Lee and F. K. Chen, “Fatigue life of cold-forging dies with various values of hardness,” J. Mater. Process. Technol., vol. 113, no. 1–3, pp. 539–543, 2001, doi: 10.1016/S0924-0136(01)00720-8.
[99] R. Ebara and K. Kubota, “Failure analysis of hot forging dies for automotive components,” Eng. Fail. Anal., vol. 15, no. 7, pp. 881–893, 2008, doi: 10.1016/j.engfailanal.2007.10.016.
[100] J. R. Davis, Tool Materials. ASM Speciality Handbook, 1995.
[101] W. R. D. Wilson, “Friction and lubrication in bulk metal-forming processes,” J. Appl. Metalwork., vol. 1, no. 1, pp. 7–19, 1978, doi: 10.1007/BF02833955.
[102] Z. Dadic, “Tribological principles and measures to reduce cutting tools wear,” Int. Conf. "Mechanical Technol. Struct. Mater., no. SEPTEMBER 2013, 2013.
[103] G. Wu, C. Xu, G. Xiao, M. Yi, Z. Chen, and L. Xu, “Self-lubricating ceramic cutting tool material with the addition of nickel coated CaF2 solid lubricant powders,” Int. J. Refract. Met. Hard Mater., vol. 56, pp. 51–58, 2016, doi: 10.1016/j.ijrmhm.2015.12.003.
[104] H. Torres, T. Caykara, H. Rojacz, B. Prakash, and M. Rodríguez Ripoll, “The tribology of Ag/MoS2-based self-lubricating laser claddings for high temperature forming of aluminium alloys,” Wear, vol. 442–443, no. November 2019, p. 203110, 2020, doi: 10.1016/j.wear.2019.203110.
[105] “Cutting Tool Coating Production,” PM Production Machining, 2019. https://www.productionmachining.com/blog/post/cutting-tool-coating-p... (accessed May 11, 2020).
[106] K. Bobzin, “High-performance coatings for cutting tools,” CIRP J. Manuf. Sci. Technol., vol. 18, no. 2017, pp. 1–9, 2017, doi: 10.1016/j.cirpj.2016.11.004.
[107] G. Telasang, J. Dutta Majumdar, G. Padmanabham, M. Tak, and I. Manna, “Effect of laser parameters on microstructure and hardness of laser clad and tempered AISI H13 tool steel,” Surf. Coatings Technol., vol. 258, pp. 1108–1118, 2014, doi: 10.1016/j.surfcoat.2014.07.023.
[108] S. Z. Qamar, “5Heat treatment and mechanical testing of AISI H11 steel,” Key Eng. Mater., vol. 656–657, pp. 434–439, 2015, doi: 10.4028/www.scientific.net/KEM.656-657.434.
[109] D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, “Additive manufacturing of metals,” Acta Mater., vol. 117, pp. 371–392, 2016, doi: 10.1016/j.actamat.2016.07.019.
[110] S. Gorsse, C. Hutchinson, M. Gouné, and R. Banerjee, “Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys,” Sci. Technol. Adv. Mater., vol. 18, no. 1, pp. 584–610, 2017, doi: 10.1080/14686996.2017.1361305.
[111] K. Monkova, I. Zetkova, L. Kučerová, M. Zetek, P. Monka, and M. Daňa, “Study of 3D printing direction and effects of heat treatment on mechanical properties of MS1 maraging steel,” Arch. Appl. Mech., vol. 89, no. 5, pp. 791–804, 2019, doi: 10.1007/s00419-018-1389-3.
[112] E. A. Jägle, Z. Sheng, P. Kürnsteiner, S. Ocylok, A. Weisheit, and D. Raabe, “Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing,” Materials (Basel)., vol. 10, no. 1, 2017, doi: 10.3390/ma10010008.
[113] C. Tan, K. Zhou, M. Kuang, W. Ma, and T. Kuang, “Microstructural characterization and properties of selective laser melted maraging steel with different build directions,” Sci. Technol. Adv. Mater., vol. 19, no. 1, pp. 746–758, 2018, doi: 10.1080/14686996.2018.1527645.
[114] Y. Bai, Y. Yang, D. Wang, and M. Zhang, “Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting,” Mater. Sci. Eng. A, vol. 703, no. June, pp. 116–123, 2017, doi: 10.1016/j.msea.2017.06.033.
[115] T. H. Becker and Di. DImitrov, “The achievable mechanical properties of SLM produced Maraging Steel 300 components,” Rapid Prototyp. J., vol. 22, no. 3, pp. 487–494, 2016, doi: 10.1108/RPJ-08-2014-0096.
[116] G. Casalino, S. L. Campanelli, N. Contuzzi, and A. D. Ludovico, “Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel,” Opt. Laser Technol., vol. 65, pp. 151–158, 2015, doi: 10.1016/j.optlastec.2014.07.021.
[117] C. Casavola, S. L. Campanelli, and C. Pappalettere, “Preliminary investigation on distribution of residual stress generated by the selective laser melting process,” J. Strain Anal. Eng. Des., vol. 44, no. 1, pp. 93–104, 2009, doi: 10.1243/03093247JSA464.
[118] K. Kempen, E. Yasa, L. Thijs, J. P. Kruth, and J. Van Humbeeck, “Microstructure and mechanical properties of selective laser melted 18Ni-300 steel,” Phys. Procedia, vol. 12, no. PART 1, pp. 255–263, 2011, doi: 10.1016/j.phpro.2011.03.033.
[119] E. Yasa, K. Kempen, J. P. Kruth, T. L., and J. Van Humbeeck, “Microstructure and Mechanical Properties of Maragings steel 300 after Selective Laser Melting,” 21st Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2010, pp. 383–396, 2010.
[120] C. Tan, K. Zhou, W. Ma, P. Zhang, M. Liu, and T. Kuang, “Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel,” Mater. Des., vol. 134, pp. 23–34, 2017, doi: 10.1016/j.matdes.2017.08.026.
[121] K. J-p and V. J. Humbeeck, “Microstructure and Mechanical Mechanical Properties of Maraging Steel 300 after Selective Laser Melting.”
[122] C. Tan et al., “Microstructure and Mechanical Properties of 18Ni-300 Maraging Steel Fabricated by Selective Laser Melting,” Jul. 2016, pp. 404–410, doi: 10.2991/icadme-16.2016.66.
[123] D. Junker, O. Hentschel, M. Schmidt, and M. Merklein, “Qualification of laser based additive production for manufacturing of forging Tools,” MATEC Web Conf., vol. 21, 2015, doi: 10.1051/matecconf/20152108010.
[124] R. Cottam, J. Wang, and V. Luzin, “Characterization of microstructure and residual stress in a 3D H13 tool steel component produced by additive manufacturing,” J. Mater. Res., vol. 29, no. 17, pp. 1978–1986, 2014, doi: 10.1557/jmr.2014.190.
[125] M. Ackermann, J. Šafka, L. Voleský, J. Bobek, and J. R. Kondapally, “Impact testing of H13 tool steel processed with use of selective laser melting technology,” Mater. Sci. Forum, vol. 919, no. Figure 1, pp. 43–51, 2018, doi: 10.4028/www.scientific.net/MSF.919.43.
[126] M. Narvan, K. S. Al-Rubaie, and M. Elbestawi, “Process-structure-property relationships of AISI H13 tool steel processed with selective laser melting,” Materials (Basel)., vol. 12, no. 14, pp. 1–20, 2019, doi: 10.3390/ma12142284.
[127] J. J. Yan et al., “Selective laser melting of H13: microstructure and residual stress,” J. Mater. Sci., vol. 52, no. 20, pp. 12476–12485, 2017, doi: 10.1007/s10853-017-1380-3.
[128] R. Mertens, B. Vrancken, N. Holmstock, Y. Kinds, J. P. Kruth, and J. Van Humbeeck, “Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts,” Phys. Procedia, vol. 83, pp. 882–890, 2016, doi: 10.1016/j.phpro.2016.08.092.
[129] M. Åsberg, G. Fredriksson, S. Hatami, W. Fredriksson, and P. Krakhmalev, “Influence of post treatment on microstructure, porosity and mechanical properties of additive manufactured H13 tool steel,” Mater. Sci. Eng. A, vol. 742, no. January 2018, pp. 584–589, 2019, doi: 10.1016/j.msea.2018.08.046.
[130] J. Mazumder, J. Choi, K. Nagarathnam, J. Koch, and D. Hetzner, “The direct metal deposition of H13 tool steel for 3-D components,” Jom, vol. 49, no. 5, pp. 55–60, 1997, doi: 10.1007/BF02914687.
[131] A. J. Pinkerton and L. Li, “Direct additive laser manufacturing using gas- and water-atomised H13 tool steel powders,” Int. J. Adv. Manuf. Technol., vol. 25, no. 5–6, pp. 471–479, 2005, doi: 10.1007/s00170-003-1844-2.
[132] L. Xue, J. Chen, and S. H. Wang, “Freeform Laser Consolidated H13 and CPM 9V Tool Steels,” Metallogr. Microstruct. Anal., vol. 2, no. 2, pp. 67–78, 2013, doi: 10.1007/s13632-013-0061-0.
[133] J. S. Park, J. H. Park, M. G. Lee, J. H. Sung, K. J. Cha, and D. H. Kim, “Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 47, no. 5, pp. 2529–2535, 2016, doi: 10.1007/s11661-016-3427-5.
[134] T. Wang, Y. Zhang, Z. Wu, and C. Shi, “Microstructure and properties of die steel fabricated by WAAM using H13 wire,” Vacuum, vol. 149, pp. 185–189, 2018, doi: 10.1016/j.vacuum.2017.12.034.
[135] J. Ge et al., “Wire-arc additive manufacturing H13 part: 3D pore distribution, microstructural evolution, and mechanical performances,” J. Alloys Compd., vol. 783, pp. 145–155, 2019, doi: 10.1016/j.jallcom.2018.12.274.
[136] M. Moradi, S. Meiabadi, and A. Kaplan, “3D Printed Parts with Honeycomb Internal Pattern by Fused Deposition Modelling; Experimental Characterization and Production Optimization,” Met. Mater. Int., vol. 25, no. 5, pp. 1312–1325, 2019, doi: 10.1007/s12540-019-00272-9.
[137] Y. Yang, D. Gu, D. Dai, and C. Ma, “Laser energy absorption behavior of powder particles using ray tracing method during selective laser melting additive manufacturing of aluminum alloy,” Mater. Des., vol. 143, pp. 12–19, 2018, doi: 10.1016/j.matdes.2018.01.043.
[138] N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,” Addit. Manuf., vol. 8, pp. 12–35, 2015, doi: 10.1016/j.addma.2015.07.002.
[139] T. E. Abioye, P. K. Farayibi, and A. T. Clare, “A comparative study of Inconel 625 laser cladding by wire and powder feedstock,” Mater. Manuf. Process., vol. 32, no. 14, pp. 1653–1659, 2017, doi: 10.1080/10426914.2017.1317787.
[140] T. E. Abioye, D. G. McCartney, and A. T. Clare, “Laser cladding of Inconel 625 wire for corrosion protection,” J. Mater. Process. Technol., vol. 217, pp. 232–240, 2015, doi: 10.1016/j.jmatprotec.2014.10.024.
[141] J. Yao, Y. Ding, R. Liu, Q. Zhang, and L. Wang, “Wear and corrosion performance of laser-clad low-carbon high-molybdenum Stellite alloys,” Opt. Laser Technol., vol. 107, pp. 32–45, 2018, doi: 10.1016/j.optlastec.2018.05.021.
[142] T. E. Abioye, A. Medrano-Tellez, P. K. Farayibi, and P. K. Oke, “Laser metal deposition of multi-track walls of 308LSi stainless steel,” Mater. Manuf. Process., vol. 32, no. 14, pp. 1660–1666, 2017, doi: 10.1080/10426914.2017.1292034.
[143] I. Shishkovsky, “Theory and Technology of Direct Laser Deposition.,” 2018, p. Additive Manufacturing of High-performance Metals.
[144] N. Hutasoit, W. Yan, R. Cottam, M. Brandt, and A. Blicblau, “Evaluation of Microstructure and Mechanical Properties at the Interface Region of Laser-Clad Stellite 6 on Steel Using Nanoindentation,” Metallogr. Microstruct. Anal., vol. 2, no. 5, pp. 328–336, 2013, doi: 10.1007/s13632-013-0093-5.
[145] M. Moradi, A. Ashoori, and A. Hasani, “Additive manufacturing of stellite 6 superalloy by direct laser metal deposition – Part 1: Effects of laser power and focal plane position,” Opt. Laser Technol., p. 106328, May 2020, doi: 10.1016/j.optlastec.2020.106328.
[146] J. Foster, C. Cullen, S. Fitzpatrick, G. Payne, L. Hall, and J. Marashi, “Remanufacture of hot forging tools and dies using laser metal deposition with powder and a hard-facing alloy Stellite 21®,” J. Remanufacturing, vol. 9, no. 3, pp. 189–203, 2019, doi: 10.1007/s13243-018-0063-9.
[147] J. R. Davis, Nickel, Cobalt, and Their Alloys. 2000.
[148] Y. Ding, R. Liu, J. Yao, Q. Zhang, and L. Wang, “Stellite alloy mixture hardfacing via laser cladding for control valve seat sealing surfaces,” Surf. Coatings Technol., vol. 329, no. September, pp. 97–108, 2017, doi: 10.1016/j.surfcoat.2017.09.018.
[149] P. Ganesh et al., “Fracture behavior of laser-clad joint of Stellite 21 on AISI 316L stainless steel,” Mater. Sci. Eng. A, vol. 527, no. 16–17, pp. 3748–3756, 2010, doi: 10.1016/j.msea.2010.03.017.
[150] D. Wang, H. Zhao, H. Wang, Y. Li, X. Liu, and G. He, “Failure Mechanism of a Stellite Coating on Heat-Resistant Steel,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 48, no. 9, pp. 4356–4364, 2017, doi: 10.1007/s11661-017-4181-z.
[151] F. Brownlie, T. Hodgkiess, A. Pearson, and A. M. Galloway, “Effect of nitriding on the corrosive wear performance of a single and double layer Stellite 6 weld cladding,” Wear, vol. 376–377, pp. 1279–1285, 2017, doi: 10.1016/j.wear.2017.01.006.
[152] Y. Kitamura, Y. Morisada, H. Fujii, T. Mizuno, and G. Abe, “Effect of friction stir processing on microstructure of laser clad cobalt-based alloy,” Weld. Int., vol. 31, no. 4, pp. 278–283, 2017, doi: 10.1080/09507116.2016.1223211.
[153] S. Sun, Y. Durandet, and M. Brandt, “Parametric investigation of pulsed Nd: YAG laser cladding of stellite 6 on stainless steel,” Surf. Coatings Technol., vol. 194, no. 2–3, pp. 225–231, 2005, doi: 10.1016/j.surfcoat.2004.03.058.
[154] R. Singh, D. Kumar, S. K. Mishra, and S. K. Tiwari, “Laser cladding of Stellite 6 on stainless steel to enhance solid particle erosion and cavitation resistance,” Surf. Coatings Technol., vol. 251, pp. 87–97, 2014, doi: 10.1016/j.surfcoat.2014.04.008.
[155] E. Díaz, J. M. Amado, J. Montero, M. J. Tobar, and A. Yáñez, “Comparative Study of Co-based Alloys in Repairing Low Cr-Mo steel Components by Laser Cladding,” Phys. Procedia, vol. 39, pp. 368–375, 2012, doi: 10.1016/j.phpro.2012.10.050.
[156] K. D. Traxel and A. Bandyopadhyay, “First Demonstration of Additive Manufacturing of Cutting Tools using Directed Energy Deposition System: StelliteTM-Based Cutting Tools,” Addit. Manuf., vol. 25, no. October 2018, pp. 460–468, 2019, doi: 10.1016/j.addma.2018.11.019.
[157] B. Ren, M. Zhang, C. Chen, X. Wang, T. Zou, and Z. Hu, “Effect of Heat Treatment on Microstructure and Mechanical Properties of Stellite 12 Fabricated by Laser Additive Manufacturing,” J. Mater. Eng. Perform., vol. 26, no. 11, pp. 5404–5413, 2017, doi: 10.1007/s11665-017-2984-0.
[158] P. Muller, P. Mognol, and J. Y. Hascoet, “Modeling and control of a direct laser powder deposition process for Functionally Graded Materials (FGM) parts manufacturing,” J. Mater. Process. Technol., vol. 213, no. 5, pp. 685–692, 2013, doi: 10.1016/j.jmatprotec.2012.11.020.
[159] Y. Yang, C. Zhang, D. Wang, L. Nie, D. Wellmann, and Y. Tian, “Additive manufacturing of WC-Co hardmetals : a review,” Int. J. Adv. Manuf. Technol., vol. 108, pp. 1653–1673, 2020.
[160] A. Fortunato, G. Valli, E. Liverani, and A. Ascari, “Additive Manufacturing of WC-Co Cutting Tools for Gear Production,” Lasers Manuf. Mater. Process., vol. 6, no. 3, pp. 247–262, 2019, doi: 10.1007/s40516-019-00092-0.
[161] J. Chen et al., “Microstructure analysis of high density WC-Co composite prepared by one step selective laser melting,” Int. J. Refract. Met. Hard Mater., vol. 84, no. June, p. 104980, 2019, doi: 10.1016/j.ijrmhm.2019.104980.
[162] A. Domashenkov, A. Borbély, and I. Smurov, “Structural modifications of WC/Co nanophased and conventional powders processed by selective laser melting,” Mater. Manuf. Process., vol. 32, no. 1, pp. 93–100, 2017, doi: 10.1080/10426914.2016.1176195.
[163] E. Uhlmann, A. Bergmann, and W. Gridin, “Investigation on Additive Manufacturing of Tungsten Carbide-cobalt by Selective Laser Melting,” Procedia CIRP, vol. 35, pp. 8–15, 2015, doi: 10.1016/j.procir.2015.08.060.
[164] N. Ku, J. J. P. III, S. Kilczewski, and A. Kudzal, “Additive Manufacturing of Cemented Tungsten Carbide with a Cobalt-Free Alloy Binder by Selective Laser Melting for High-Hardness Applications,” Addit. Manuf. Compos. Complex Mater., vol. 71, pp. 1535–1542, 2019.
[165] R. S. Khmyrov, V. A. Safronov, and A. V. Gusarov, “Obtaining crack-free WC-Co alloys by selective laser melting,” Phys. Procedia, vol. 83, pp. 874–881, 2016, doi: 10.1016/j.phpro.2016.08.091.
[166] C. W. Li, K. C. Chang, and A. C. Yeh, “On the microstructure and properties of an advanced cemented carbide system processed by selective laser melting,” J. Alloys Compd., vol. 782, pp. 440–450, 2019, doi: 10.1016/j.jallcom.2018.12.187.
[167] D. Gu, Laser Additive Manufacturing of High-Performance Materials. Springer Berlin Heidelberg, 2015.
[168] S. L. Campanelli, N. Contuzzi, P. Posa, and A. Angelastro, “Printability and microstructure of selective laser melting of WC/Co/Cr powder,” Materials (Basel)., vol. 12, no. 15, 2019, doi: 10.3390/ma12152397.

Permalink -

https://repository.canterbury.ac.uk/item/8y22z/porosity-cracks-and-mechanical-properties-of-additively-manufactured-tooling-alloys-a-review

Download files


Accepted author manuscript
  • 3
    total views
  • 3
    total downloads
  • 3
    views this month
  • 3
    downloads this month

Export as

Related outputs

Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications
Hassanin, H., Fan , W., Chen, Y., Li, J., Sun, Y., Feng, F. and Sareh, P. 2021. Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications. Structures. https://doi.org/10.1016/j.istruc.2021.06.110
Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approaches
Hassanin, H., Zweiri, Y., Finet, L., Essa, K., Qiu, C. and Attallah, M. 2021. Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approaches. Materials. 14 (8), p. 2056. https://doi.org/10.3390/ma14082056
3DP printing of oral solid formulations: a systematic review
Brambilla, C., Okafor-Muo, O., Hassanin, H. and ElShaer, A. 2021. 3DP printing of oral solid formulations: a systematic review. Pharmaceutics. 13 (3), p. 358. https://doi.org/10.3390/pharmaceutics13030358
Powder-based laser hybrid additive manufacturing of metals: A review
Hassanin, H. 2021. Powder-based laser hybrid additive manufacturing of metals: A review. The International Journal of Advanced Manufacturing Technology.
Micro-fabrication of ceramics: additive manufacturing and conventional technologies
Hassanin, H., Essa, K., Elshaer, A., Imbaby, M. and El-Sayed, T. E. 2021. Micro-fabrication of ceramics: additive manufacturing and conventional technologies. Journal of Advanced Ceramics. 10, pp. 1-27. https://doi.org/10.1007/s40145-020-0422-5
4D Printing of origami structures for minimally invasive surgeries using functional scaffold
Langford, T, Mohammed, A., Essa, K., Elshaer, A. and Hassanin, H. 2020. 4D Printing of origami structures for minimally invasive surgeries using functional scaffold. Applied Sciences. 11 (1), p. 332. https://doi.org/10.3390/app11010332
Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile
Hassanin, H., Mohammed, M., Abdel-Wahab, A. and Essa, K 2020. Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile. Materials.
3D printing of solid oral dosage forms: numerous challenges with unique opportunities
Hassanin, H. 2020. 3D printing of solid oral dosage forms: numerous challenges with unique opportunities. Journal of Pharmaceutical Sciences. https://doi.org/10.1016/j.xphs.2020.08.029
Design optimisation of additively manufactured titanium lattice structures for biomedical implants
El-Sayed, M.A., Essa, K., Ghazy, M. and Hassanin, H. 2020. Design optimisation of additively manufactured titanium lattice structures for biomedical implants. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-020-05982-8
4D Printing of NiTi auxetic structure with improved ballistic performance
Hassanin, H., Abena, A., Elsayed, M.A. and Essa, K. 2020. 4D Printing of NiTi auxetic structure with improved ballistic performance. Micromachines. 11 (8), p. 745. https://doi.org/doi.org/10.3390/mi11080745