References | [1] A. Verl, A. Valente, S. Melkote, C. Brecher, E. Ozturk, L. T. Tunc, Robots in machining, CIRP Annals 68 (2) (2019) 799–822. [2] M. Ryalat, H. ElMoaqet, M. AlFaouri, Design of a smart factory based on cyber-physical systems and internet of things towards industry 4.0, Applied Sciences 13 (4) (2023) 2156. [3] V. B. Neto, C. Marques, A. Frizera-Neto, A. G. Leal-Junior, Fbg-based sensing system to improve tactile sensitivity of robotic manipulators working in unstructured environments, Available at SSRN 4369590. [4] M. Javaid, A. Haleem, R. P. Singh, R. Suman, Substantial capabilities of robotics in enhancing industry 4.0 implementation, Cognitive Robotics 1 (2021) 58–75. [5] R. N. Albustanji, S. Elmanaseer, A. A. Alkhatib, Robotics: Five senses plus one—an overview, Robotics 12 (3) (2023) 68. [6] J.-Y. Lin, X.-W. Lee, M.-C. Hsieh, C.-O. Chang, High-angular-sensitivity total-internal-reflection heterodyne interferometry for small displacement measurements, Sensors and Actuators A: Physical 277 (2018) 163–168. [7] W. Yuan, S. Dong, E. H. Adelson, Gelsight: High-resolution robot tactile sensors for estimating geometry and force, Sensors 17 (12) (2017) 2762. [8] S. Zhang, Z. Chen, Y. Gao, W. Wan, J. Shan, H. Xue, F. Sun, Y. Yang, B. Fang, Hardware technology of vision-based tactile sensor: A review, IEEE Sensors Journal 0 (0) (2022) 0. [9] N. Sunil, S. Wang, Y. She, E. Adelson, A. R. Garcia, Visuotactile affordances for cloth manipulation with local control, in: Conference on Robot Learning, PMLR, 2023, pp. 1596–1606. [10] W. Ruan, W. Zhu, K. Wang, Q. Lu, W. Yeh, L. Luo, C. Su, Q. Wang, Vision-tactile fusion based detection of deformation and slippage of deformable objects during grasping, in: International Conference on Cognitive Systems and Signal Processing, Springer, 2022, pp. 593–604. [11] B. Fang, X. Long, Y. Zhang, G. Luo, F. Sun, H. Liu, Fabric defect detection using vision-based tactile sensor, arXiv preprint arXiv:2003.00839 0 (0–10) (2020) 0. [12] W.-C. Shi, J.-M. Zheng, Y. Li, X.-B. Li, Three-dimensional reconstruction method for machined surface topography based on gray gradient constraints, Applied Sciences 9 (3) (2019) 591. [13] C. Zhang, S. Cui, S. Wang, J. Hu, Y. Huangfu, B. Zhang, High-precision 3d reconstruction study with emphasis on refractive calibration of gelstereo-type sensors, Sensors 23 (5) (2023) 2675. [14] H. Ma, J. Ji, K.-M. Lee, Effects of refraction model on binocular visuotactile sensing of 3-d deformation, IEEE Sensors Journal 22 (18) (2022) 17727–17736. [15] B. T. Turkey, Image processing based tactile tactical sensor development and sensitivity determination to extract the 3d surface topography of objects, Sensors and Actuators A: Physical 358 (2023) 114415. [16] M. Aamir, A. Sharif, M. Z. Zahir, K. Giasin, M. Tolouei-Rad, Experimental assessment of hole quality and tool condition in the machining of an aerospace alloy, Machines 11 (7) (2023) 726. [17] Y. Fan, J. Huang, Y. Zhang, N. Huang, Q. Bi, Y. Wang, Improvement in hole-pose error for aerospace drilling applications based on hermite surface reconstruction and manifold error similarity, Precision Engineering 81 (2023) 22–35. [18] L. Yu, Y. Zhang, Q. Bi, Y. Wang, Research on surface normal measurement and adjustment in aircraft assembly, Precision Engineering 50 (2017) 482–493. [19] Y. Zhang, Q. Bi, L. Yu, Y. Wang, Online adaptive measurement and adjustment for flexible part during high precision drilling process, The International Journal of Advanced Manufacturing Technology 89 (2017) 3579–3599. [20] L. Yu, Q. Bi, Y. Ji, Y. Fan, N. Huang, Y. Wang, Vision based in-process inspection for countersink in automated drilling and riveting, Precision Engineering 58 (2019) 35–46. [21] Y. Gao, D. Wu, Y. Dong, X. Ma, K. Chen, The method of aiming towards the normal direction for robotic drilling, International Journal of Precision Engineering and Manufacturing 18 (2017) 787–794. [22] W. Zhu, B. Mei, G. Yan, Y. Ke, Measurement error analysis and accuracy enhancement of 2d vision system for robotic drilling, Robotics and Computer-Integrated Manufacturing 30 (2) (2014) 160–171. [23] S. Zhang, Y. Sun, F. Sun, Y. Yang, B. Fang, Pfs 1.0: A development tool applied to vision-based tactile sensor process formulation and fabrication, Sensors and Actuators A: Physical 367 (2024) 115090. [24] C. Taesi, F. Aggogeri, N. Pellegrini, Cobot applications—recent advances and challenges, Robotics 12 (3) (2023) 79. [25] I. M. Zaid, M. Halwani, A. Ayyad, A. Imam, F. Almaskari, H. Hassanin, Y. Zweiri, Elastomer-based visuotactile sensor for normality of robotic manufacturing systems, Polymers 14 (23) (2022) 5097. [26] H. Sajwani, A. Ayyad, Y. Alkendi, M. Halwani, Y. Abdulrahman, A. Abusafieh, Y. Zweiri, Tactigraph: An asynchronous graph neural network for contact angle prediction using neuromorphic vision-based tactile sensing, Sensors 23 (14) (2023) 6451. [27] M. Halwani, A. Ayyad, L. AbuAssi, Y. Abdulrahman, F. Almaskari, H. Hassanin, A. Abusafieh, Y. Zweiri, A novel vision-based multi-functional sensor for normality and position measurements in precise robotic manufacturing, Available at SSRN 4360666 0 (0–10) (2023) 0. [28] S. Tsuji, T. Kohama, Using a convolutional neural network to construct a pen-type tactile sensor system for roughness recognition, Sensors and Actuators A: Physical 291 (2019) 7–12. [29] V. Corsino, V. Ruiz-D´ıez, J. M. Gilp´erez, M. Ram´ırez-Palma, J. L. S´anchez-Rojas, Machine learning techniques for the estimation of viscosity and density of aqueous solutions in piezo-actuated 3d-printed cells, Sensors and Actuators A: Physical 363 (2023) 114694. [30] S. Zhang, Y. Sun, J. Shan, Z. Chen, F. Sun, Y. Yang, B. Fang, Tirgel: A visuo-tactile sensor with total internal reflection mechanism for external observation and contact detection, IEEE Robotics and Automation Letters (2023). [31] U. H. Shah, R. Muthusamy, D. Gan, Y. Zweiri, L. Seneviratne, On the design and development of vision-based tactile sensors, Journal of Intelligent & Robotic Systems 102 (2021) 1–27. [32] D. Zhao, F. Sun, An accurate positioning method for robotic manipulation based on vision and tactile sensors, in: Cognitive Systems and Signal Processing: 5th International Conference, ICCSIP 2020, Zhuhai, China, December 25–27, 2020, Revised Selected Papers 5, Springer, 2021, pp. 621–631. [33] V. Kakani, X. Cui, M. Ma, H. Kim, Vision-based tactile sensor mechanism for the estimation of contact position and force distribution using deep learning, Sensors 21 (5) (2021) 1920. [34] M. Li, T. Li, Y. Jiang, Marker displacement method used in vision-based tactile sensors—from 2d to 3d-a review, IEEE Sensors Journal 0 (2023) 0. [35] H. Can, P. Svec Jr, J. Bydzovsky, P. Svec Sr, H. S¨ozeri, U. Topal, Systematic optimization of the sensing properties of ring-core fluxgate sensors with different core diameters and materials, Sensors and Actuators A: Physical 255 (2017) 94–103. [36] Z.-P. Wang, H. Yao, H. H. See, W. Yang, B. C. K. Tee, Z. Liu, Tactile sensory response prediction and design using virtual tests, Sensors and Actuators A: Physical 360 (2023) 114571. [37] D. J. Sut, P. Sethuramalingam, Soft manipulator for soft robotic applications: a review, Journal of Intelligent & Robotic Systems 108 (1) (2023) 10. [38] T.-D. Nguyen, J. S. Lee, Recent development of flexible tactile sensors and their applications, Sensors 22 (1) (2021) 50. [39] Y. Chen, J. Lin, X. Du, B. Fang, F. Sun, S. Li, Non-destructive fruit firmness evaluation using visionbased tactile information, in: 2022 International Conference on Robotics and Automation (ICRA), IEEE, 2022, pp. 2303–2309. [40] I. Andrussow, H. Sun, K. J. Kuchenbecker, G. Martius, Minsight: A fingertip-sized vision-based tactile sensor for robotic manipulation, Advanced Intelligent Systems 5 (8) (2023) 2300042. [41] H. Sun, K. J. Kuchenbecker, G. Martius, A soft thumb-sized vision-based sensor with accurate all-round force perception, Nature Machine Intelligence 4 (2) (2022) 135–145. [42] L. Marechal, P. Balland, L. Lindenroth, F. Petrou, C. Kontovounisios, F. Bello, Toward a common framework and database of materials for soft robotics, Soft robotics 8 (3) (2021) 284–297. [43] W. Small, M. A. Pearson, W. A. Jensen, Astm d395 short-term compression set of solid (nonporous) siloxanes: Se 1700, sylgard 184, and” new” m9787, Tech. rep., Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States) (2015). [44] I. Abubakar, P. Myler, E. Zhou, Constitutive modelling of elastomeric seal material under compressive loading, Modeling and Numerical Simulation of Material Science 0 (2016) 28–40, (Accessed on 11/04/2023). [45] Ecoflex, Ecoflex™ 00-30 product information — smooth-on, inc., (Accessed on 11/04/2023) (2023). URL https://www.smooth-on.com/products/ecoflex-00-30/ [46] T. O’Malley, E. Bursztein, J. Long, F. Chollet, H. Jin, L. Invernizzi, et al., Kerastuner (2019). URL https://github.com/keras-team/keras-tuner |
---|