The legacy of Verena Holmes: inspiring next generation of engineers

Conference poster


Saeidlou, S., Ishaq, R., Nortcliffe, A. and Ghadiminia, N. 2021. The legacy of Verena Holmes: inspiring next generation of engineers.
AuthorsSaeidlou, S., Ishaq, R., Nortcliffe, A. and Ghadiminia, N.
TypeConference poster
Description

Verena Holmes was born in 1889 in Ashford, Kent, Verena became a pioneer for women in the industry as arguably the first female in the UK to have a full-time career as a professional mechanical, design and biomedical engineer. Verena was an advocate for widening participation in engineering and dedicated to the development of female engineers, she represented a breakthrough for equal rights in the early 20th century. As a creative and talented mechanical engineer, inventor and entrepreneur with own engineering business in Gillingham, Kent. In 1932, Verena Holmes filed a patent for poppet valve for fluid pressured systems, and in 2021 has provided the inspiration to students to conceive, design, implement and operate their own poppet valve. The poppet valve challenging first year biomedical, mechanical and product design engineering students to consider engineering materials, engineering manufacturing, standard components, fixes and fittings, and tolerances considerations into their poppet valve. This paper will provide qualitative analysis of the level of practical engineering learning, and the depth of student learning. Also, the quantitative analysis of the students’ evaluation of the learning opportunity to inspire, develop and stimulate them to be the next generation of engineers.

KeywordsPractical Engineering Learning; CDIO; Diversity; Inclusion; STEM; Women and girls in STEM
Year2021
ConferencePractical Engineering Education 2021
Official URLhttps://sites.google.com/sheffield.ac.uk/pee/home
Related URLhttps://sites.google.com/sheffield.ac.uk/pee/programme/session-6#h.ruv9rv2269ua
File
License
All rights reserved
File Access Level
Open
References

DET, 2000. The Pedagogical Model. Melbourne, Department of Education and Training.

Holmes, V., 1931. A new infinitely variable poppet valve gear. Journal of the institute of locomotive engineers, I(1), pp. 481-536.

Holmes, V., 1982. Improvements in valve gear for fluid pressure units. United Kingdom, Patent No. 380,198.

James, M. & Pollard, A., 2015. TLRP's ten principles for effective pedagogy: Rationale, development, evidence, argument and impact, Cambridge: University of Cambridge.

Long III, L., 2016. Investigating First-Year Engineering Students' Educational Technology Use and Academic Achievement: Development and Validation of an Assessment Tool, Daytona Beach: Embry-Riddle Aeronautical University.

Parr, A., 2011. Hydraulics and Pneumatics. 1st ed. Amsterdam: Elsevier.

WES, 2014. How their lives shaped our lives. London, Women's Engineering Society.

Publication process dates
Deposited27 Sep 2021
Permalink -

https://repository.canterbury.ac.uk/item/8z010/the-legacy-of-verena-holmes-inspiring-next-generation-of-engineers

Download files


File
Poster.pdf
License: All rights reserved
File access level: Open

  • 46
    total views
  • 25
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

A hybrid clustering method based on the several diverse basic clustering and meta-clustering aggregation technique
Zhou, Bing, Lu, Bei and Saeidlou, Salman 2022. A hybrid clustering method based on the several diverse basic clustering and meta-clustering aggregation technique. Cybernetics and Systems. 53 (7), pp. 1-27. https://doi.org/10.1080/01969722.2022.2110682
How are do you create an inclusive engineering graduate pipeline?
Nortcliffe, A. 2022. How are do you create an inclusive engineering graduate pipeline? Precision. June (24), pp. 8-11.
Evaluation of students’ performance in CDIO projects through blended learning
Manna, S., Battikh, N., Nortcliffe, A. and Camm, J. 2022. Evaluation of students’ performance in CDIO projects through blended learning.
Digital reality in supporting students' learning, the challenges and opportunities
Nortcliffe, A. 2021. Digital reality in supporting students' learning, the challenges and opportunities. Education Technology Insights.
Cybersecurity of smart buildings: a facilities management perspective
Ghadiminia, N. and Saeidlou, S. 2021. Cybersecurity of smart buildings: a facilities management perspective.
Micro-additive manufacturing technologies of three-dimensional MEMS
Hassanin, H., Sheikholeslami, G., Pooya, S. and Ishaq, R. 2021. Micro-additive manufacturing technologies of three-dimensional MEMS . Advanced Engineering Materials. https://doi.org/10.1002/adem.202100422
Towards decentralised job shop scheduling as a web service
Saeidlou, S., Saadat, M. and Jules, G. D. 2021. Towards decentralised job shop scheduling as a web service. Cogent Engineering. 8 (1). https://doi.org/10.1080/23311916.2021.1938795
Adaptive and flexible online learning during Covid19 lockdown
Manna, S., Nortcliffe, A., Sheikholeslami, G. and Richmond-Fuller, A. 2021. Adaptive and flexible online learning during Covid19 lockdown.
Reduction and mitigation strategy of carbon dioxide emissions from internal combustion engine: An engine development initiative for sustainable environment
Mishra, P. C., Ishaq, R. and Khoshnaw, F. 2021. Reduction and mitigation strategy of carbon dioxide emissions from internal combustion engine: An engine development initiative for sustainable environment . Journal of Cleaner Production. 286 (125460). https://doi.org/10.1016/j.jclepro.2020.125460
Developing engineering growth mindset through CDIO outreach activites
Manna, S., Nortcliffe, A. and Sheikholeslami, G. 2020. Developing engineering growth mindset through CDIO outreach activites. Gothenburg, Sweden http://www.cdio.org/.
New approaches to engineering higher education: case studies
Nortcliffe, A., McIntosh, G. and Hernandez, E. 2019. New approaches to engineering higher education: case studies.
CDIO Open day learning activity to inspire the next generation of engineering applicants
Nortcliffe, A., Nortcliffe, A. and Sheikholeslami, G. 2019. CDIO Open day learning activity to inspire the next generation of engineering applicants.
Developing good practices for industrial engagement in co-creation of CDIO curriculum
Fortin, C, Nortcliffe, A. and Serreau, Y. 2019. Developing good practices for industrial engagement in co-creation of CDIO curriculum.
How accessible is the STEM post 16 education provision, the pipeline to computing and engineering programmes?
Nortcliffe, A., Stallard, J.A. and Barley, R. 2019. How accessible is the STEM post 16 education provision, the pipeline to computing and engineering programmes?
Ontology-based decision tree model for prediction in a manufacturing network
Khan, Z. M. A., Saeidlou, S. and Saadat, M. 2019. Ontology-based decision tree model for prediction in a manufacturing network. Production and Manufacturing Research. 7 (1), pp. 335-349. https://doi.org/10.1080/21693277.2019.1621228
Agent-based distributed manufacturing scheduling: an ontological approach
Saeidlou, S., Saadat, M., Sharifi, E. A. and Jules, G. D. 2019. Agent-based distributed manufacturing scheduling: an ontological approach. Cogent Engineering. 6 (1). https://doi.org/10.1080/23311916.2019.1565630
Knowledge and agent-based system for decentralised scheduling in manufacturing
Saeidlou, S., Saadat, M. and Jules, G. D. 2019. Knowledge and agent-based system for decentralised scheduling in manufacturing. Cogent Engineering. 6 (1). https://doi.org/10.1080/23311916.2019.1582309
Statistically, does peer assisted learning make a difference on a UK engineering degree programme? HETL Scotland 2017
Nortcliffe, A., Parveen, S. and Keech-Pink, C. 2018. Statistically, does peer assisted learning make a difference on a UK engineering degree programme? HETL Scotland 2017. Journal of Applied Research in Higher Education. 14 (1), pp. 489-506. https://doi.org/10.1108/JARHE-04-2017-0047