References | Agarap, A. F. (2018). Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375. [Google Scholar] Akintoye, A., & Fitzgerald, E. (2000). A survey of current cost estimating practices in the UK. Construction Management and Economics, 18(2), 161–172. https://doi.org/10.1080/014461900370799 [Taylor & Francis Online], [Google Scholar] Al-Momani, A. H. (1996). Construction cost prediction for public school buildings in Jordan. Construction Management and Economics, 14(4), 311–317. https://doi.org/10.1080/014461996373386 [Taylor & Francis Online], [Google Scholar] Al-Nassafi, N. M. (2022). The effect of cash flow variation on project performance: An empirical study from Kuwait. The Journal of Asian Finance Economics and Business, 9(3), 53–63. https://doi.org/10.13106/jafeb.2022.vol9.no3.0053 [Google Scholar] Alex, D. P., Al Hussein, M., Bouferguene, A., & Fernando, S. (2010). Artificial neural network model for cost estimation: City of Edmonton's water and sewer installation services. Journal of Construction Engineering and Management, 136(7), 745–756. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000184 [Crossref], [Web of Science ®], [Google Scholar] Alshboul, O., Shehadeh, A., Al-Kasasbeh, M., Al Mamlook, R. E., Halalsheh, N., & Alkasasbeh, M. (2022a). Deep and machine learning approaches for forecasting the residual value of heavy construction equipment: A management decision support model. Engineering, Construction and Architectural Management, 29(10), 4153–4176. https://doi.org/10.1108/ECAM-08-2020-0614 [Crossref], [Google Scholar] Alshboul, O., Shehadeh, A., Almasabha, G., & Almuflih, A. S. (2022b). Extreme gradient boosting-based machine learning approach for green building cost prediction. Sustainability, 14(11), 6651. https://doi.org/10.3390/su14116651 [Crossref], [Google Scholar] Alshemosi, A. M. B., & Alsaad, H. S. H. (2017). Cost estimation process for construction residential projects by using multifactor linear regression technique. Criterion, 6(6), 7. https://doi.org/10.21275/ART20174128 [Google Scholar] Amoore, L. (2022). Machine learning political orders. Review of International Studies, 49(1), 1–17. https://doi.org/10.1017/S0260210522000031 [Google Scholar] Asuncion, A., & Newman, D. (2007). UCI machine learning repository. [Google Scholar] Baduge, S. K., Thilakarathna, S., Perera, J. S., Arashpour, M., Sharafi, P., Teodosio, B., & Mendis, P. (2022). Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 141, 104440. https://doi.org/10.1016/j.autcon.2022.104440 [Crossref], [Google Scholar] Banks-Grasedyck, D., Lippke, E., Oelfin, H., Schwaiger, R., & Seemann, V. (2022). The underestimated success factor: People, in: Successfully managing S/4HANA projects (pp. 125–176). Springer. [Crossref], [Google Scholar] Bernagros, J. T., Pankani, D., Struck, S. D., & Deerhake, M. E. (2021). Estimating regionalized planning costs of green infrastructure and low-impact development stormwater management practices: Updates to the US environmental protection agency's national stormwater calculator. Journal of Sustainable Water in the Built Environment, 7(2), 2. https://doi.org/10.1061/JSWBAY.0000934 [Crossref], [Google Scholar] Bird, J. J., Ekárt, A., Buckingham, C. D., & Faria, D. R. (2019, July). Evolutionary optimisation of fully connected artificial neural network topology. In Intelligent Computing-Proceedings of the Computing Conference (pp. 751–762). Springer. [Crossref], [Google Scholar] Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014 [Crossref], [Web of Science ®], [Google Scholar] Chakraborty, D., Elhegazy, H., Elzarka, H., & Gutierrez, L. (2020). A novel construction cost prediction model using hybrid natural and light gradient boosting. Advanced Engineering Informatics, 46, 101201. https://doi.org/10.1016/j.aei.2020.101201 [Crossref], [Google Scholar] Chan, S. L., & Park, M. (2005). Project cost estimation using principal component regression. Construction Management and Economics, 23(3), 295–304. https://doi.org/10.1080/01446190500039812 [Taylor & Francis Online], [Google Scholar] Cheng, M. Y., & Hoang, N. D. (2018). Estimating construction duration of diaphragm wall using firefly-tuned least squares support vector machine. Neural Computing and Applications, 30(8), 2489–2497. https://doi.org/10.1007/s00521-017-2840-z [Crossref], [Google Scholar] Choudhry, R. M. (2016). Appointing the design consultant as supervision consultant on construction projects. Journal of Legal Affaires and Dispute Resolution in Engineering Construction, 8(4), 04516005. https://doi.org/10.1061/(ASCE)LA.1943-4170.0000195 [Crossref], [Google Scholar] Dang-Trinh, N., Duc-Thang, P., Nguyen-Ngoc Cuong, T., & Duc-Hoc, T. (2022). Machine learning models for estimating preliminary factory construction cost: Case study in southern Vietnam. International Journal of Construction Management, 1–9. https://doi.org/10.1080/15623599.2022.2106043 [Taylor & Francis Online], [Google Scholar] Datta, L. (2020). A survey on activation functions and their relation with xavier and he normal initialization. arXiv preprint arXiv:2004.06632. [Google Scholar] Doloi, H. (2013). Cost overruns and failure in project management: Understanding the roles of key stakeholders in construction projects. Journal of Construction Engineering and Management, 139(3), 267–279. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000621 [Crossref], [Web of Science ®], [Google Scholar] Elhag, T. M. S., Boussabaine, A. H., & Ballal, T. M. A. (2005). Critical determinants of construction tendering costs: Quantity surveyors’ standpoint. International Journal of Project Management, 23(7), 538–545. https://doi.org/10.1016/j.ijproman.2005.04.002 [Crossref], [Google Scholar] Elhegazy, H., Chakraborty, D., Elzarka, H., Ebid, A. M., Mahdi, I. M., Aboul Haggag, S. Y., & Abdel Rashid, I. (2022). Artificial intelligence for developing accurate preliminary cost estimates for composite flooring systems of multi-storey buildings. Journal of Asian Architecture and Building Engineering, 21(1), 120–132. https://doi.org/10.1080/13467581.2020.1838288 [Taylor & Francis Online], [Web of Science ®], [Google Scholar] Erdis, E. (2013). The effect of current public procurement law on duration and cost of construction projects in Turkey. Journal of Civil Engineering and Management, 19(1), 121–135. https://doi.org/10.3846/13923730.2012.746238 [Taylor & Francis Online], [Web of Science ®], [Google Scholar] Faruqui, N., Yousuf, M. A., Whaiduzzaman, M., Azad, A. K. M., Barros, A., & Moni, M. A. (2021). Lungnet: A hybrid deep-CNN model for lung cancer diagnosis using CT and wearable sensor-based medical IoT data. Computers in Biology and Medicine, 139, 104961. https://doi.org/10.1016/j.compbiomed.2021.104961 [Crossref], [PubMed], [Google Scholar] Goodwin, P., & Lawton, R. (1999). On the asymmetry of the symmetric MAPE. International Journal of Forecasting, 15(4), 405–408. https://doi.org/10.1016/S0169-2070(99)00007-2 [Crossref], [Web of Science ®], [Google Scholar] Hashemi, S. T., Ebadati E, O. M., & Kaur, H. (2019). A hybrid conceptual cost estimating model using ANN and GA for power plant projects. Neural Computing and Applications, 31(7), 2143–2154. https://doi.org/10.1007/s00521-017-3175-5 [Crossref], [Google Scholar] Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector machines. IEEE Intelligent Systems and Their Applications, 13(4), 18–28. https://doi.org/10.1109/5254.708428 [Crossref], [Web of Science ®], [Google Scholar] Hitsanu, M. S. (2022). Conceptual Cost Estimation of Highway Earthwork Construction in Iowa Using Spatial Statistical Modeling. [Doctoral dissertation, North Dakota State University]. [Google Scholar] Hu, Q., Che, X., Zhang, L., & Yu, D. (2010). Feature evaluation and selection based on neighborhood soft margin. Neurocomputing, 73(10-12), 2114–2124. https://doi.org/10.1016/j.neucom.2010.02.007 [Crossref], [Google Scholar] Huang, C. H., & Hsieh, S. H. (2020). Predicting BIM labor cost with random forest and simple linear regression. Automation in Construction, 118, 103280. https://doi.org/10.1016/j.autcon.2020.103280 [Crossref], [Web of Science ®], [Google Scholar] Hui, F., Wei, C., ShangGuan, W., Ando, R., & Fang, S. (2022). Deep encoder–decoder-NN: A deep learning-based autonomous vehicle trajectory prediction and correction model. Physica A: Statistical Mechanics and its Applications, 593, 126869. https://doi.org/10.1016/j.physa.2022.126869 [Crossref], [Google Scholar] Juszczyk, M. (2017). The challenges of nonparametric cost estimation of construction works with the use of artificial intelligence tools. Procedia Engineering, 196, 415–422. https://doi.org/10.1016/j.proeng.2017.07.218 [Crossref], [Google Scholar] K'akumu, O. A. (2007). Construction statistics review for Kenya. Construction Management and Economics, 25(3), 315–326. https://doi.org/10.1080/01446190601139883 [Taylor & Francis Online], [Google Scholar] Kahloot, K. M., & Ekler, P. (2021). Algorithmic splitting: A method for dataset preparation. IEEE Access, 9, 125229–125237. https://doi.org/10.1109/ACCESS.2021.3110745 [Crossref], [Google Scholar] Kim, J., & Cha, H. S. (2022). Expediting the cost estimation process for aged-housing renovation projects using a probabilistic deep learning approach. Sustainability, 14(1), 564. https://doi.org/10.3390/su14010564 [Crossref], [Google Scholar] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. [Google Scholar] Kumbure, M. M., Lohrmann, C., Luukka, P., & Porras, J. (2022). Machine learning techniques and data for stock market forecasting: A literature review. Expert Systems with Applications, 197, 116659. https://doi.org/10.1016/j.eswa.2022.116659 [Crossref], [Google Scholar] Lee, H., Chung, S. H., & Choi, E. J. (2016). A case study on machine learning applications and performance improvement in learning algorithm. Journal of Digital Convergence, 14(2), 245–258. https://doi.org/10.14400/JDC.2016.14.2.245 [Crossref], [Google Scholar] Li, Q., Guo, L., & Zhou, H. (2022). Construction quality evaluation of large-scale concrete canal lining based on statistical analysis. FAHM, and Cloud Model. Sustainability, 14(13), 7663. https://doi.org/10.3390/su14137663 [Google Scholar] Liao, S. W., Hsu, C. H., Lin, J. W., Wu, Y. T., & Leu, F. Y. (2022). A deep learning-based Chinese semantic parser for the almond virtual assistant. Sensors, 22(5), 1891. https://doi.org/10.3390/s22051891 [Crossref], [PubMed], [Google Scholar] Lowe, D. J., Emsley, M. W., & Harding, A. (2006). Predicting construction cost using multiple regression techniques. Journal of Construction Engineering and Management, 132(7), 750–758. https://doi.org/10.1061/(ASCE)0733-9364(2006)132:7(750) [Crossref], [Web of Science ®], [Google Scholar] Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and machine learning forecasting methods: Concerns and ways forward. PloS One, 13(3), e0194889. https://doi.org/10.1371/journal.pone.0194889 [Crossref], [PubMed], [Web of Science ®], [Google Scholar] Markiz, N., & Jrade, A. (2022). Integrating an expert system with BrIMS, cost estimation, and linear scheduling at conceptual design stage of bridge projects. International Journal of Construction Management, 22(5), 913–928. https://doi.org/10.1080/15623599.2019.1661572 [Taylor & Francis Online], [Google Scholar] Matel, E., Vahdatikhaki, F., Hosseinyalamdary, S., Evers, T., & Voordijk, H. (2022). An artificial neural network approach for cost estimation of engineering services. International Journal of Construction Management, 22(7), 1274–1287. https://doi.org/10.1080/15623599.2019.1692400 [Taylor & Francis Online], [Google Scholar] Mianjy, P., Arora, R., & Vidal, R. (2018, July). On the implicit bias of dropout. In Jennifer Dy & Andreas Krause (Eds.), International conference on machine learning (pp. 3540–3548). PMLR. [Google Scholar] Nguyen, H. T., Cheah, C. C., & Toh, K. A. (2022). An analytic layer-wise deep learning framework with applications to robotics. Automatica, 135, 110007. https://doi.org/10.1016/j.automatica.2021.110007 [Crossref], [Google Scholar] Okonkwo, C., Evans, U. F., & Ekung, S. (2022). Unearthing direct and indirect material waste-related factors underpinning cost overruns in construction projects. International Journal of Construction Management, 1–7. https://doi.org/10.1080/15623599.2022.2052431 [Taylor & Francis Online], [Google Scholar] Ozer, D. J. (1985). Correlation and the coefficient of determination. Psychological Bulletin, 97(2), 307. https://doi.org/10.1037/0033-2909.97.2.307 [Crossref], [Web of Science ®], [Google Scholar] Presnell, K. V., & Alper, H. S. (2019). Systems metabolic engineering meets machine learning: A new era for data-driven metabolic engineering. Biotechnology Journal, 14(9), 1800416. https://doi.org/10.1002/biot.201800416 [Crossref], [Web of Science ®], [Google Scholar] Rafiei, M. H., & Adeli, H. (2018). Novel machine-learning model for estimating construction costs considering economic variables and indexes. Journal of Construction Engineering and Management, 144(12), 04018106. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001570 [Crossref], [Google Scholar] Saranya, C., & Manikandan, G. (2013). A study on normalization techniques for privacy preserving data mining. International Journal of Engineering Technology (IJET), 5(3), 2701–2704. [Google Scholar] Scheres, S. H. (2016). Processing of structurally heterogeneous cryo-EM data in RELION. Methods in Enzymology, 579, 125–157. https://doi.org/10.1016/bs.mie.2016.04.012 [Crossref], [PubMed], [Google Scholar] Shalev-Shwartz, S., Singer, Y., Srebro, N., & Cotter, A. (2011). Pegasos: Primal estimated sub-gradient solver for svm. Mathematical Programming, 127(1), 3–30. https://doi.org/10.1007/s10107-010-0420-4 [Crossref], [Web of Science ®], [Google Scholar] Shoar, S., Chileshe, N., & Edwards, J. D. (2022). Machine learning-aided engineering services’ cost overruns prediction in high-rise residential building projects: Application of random forest regression. Journal of Building Engineering, 50, 104102. https://doi.org/10.1016/j.jobe.2022.104102 [Crossref], [Google Scholar] Shutian, F., Tianyi, Z., & Ying, Z. (2017). Prediction of construction projects’ costs based on fusion method. Engineering Computations, 34(7), 2396–2408. https://doi.org/10.1108/EC-02-2017-0065 [Crossref], [Google Scholar] Strömbäck, A., & Tärnell, E. (2022). Evaluation and Learning about Social Sustainability in the Real Estate Industry: A Qualitative and Quantitative Study of how Real Estate Companies can Contribute to Society and Profitability. [Google Scholar] Sun, C., Adamopoulos, P., Ghose, A., & Luo, X. (2022). Predicting stages in omnichannel path to purchase: A deep learning model. Information Systems Research, 33(2), 429–445. https://doi.org/10.1287/isre.2021.1071 [Crossref], [Google Scholar] Tas, E., & Yaman, H. (2005). A building cost estimation model based on cost significant work packages. Engineering Construction and Architechtural Management, 12(3), 251–263. https://doi.org/10.1108/09699980510600116 [Crossref], [Google Scholar] Tayefeh Hashemi, S., Ebadati, O. M., & Kaur, H. (2020). Cost estimation and prediction in construction projects: A systematic review on machine learning techniques. SN Applied Sciences, 2(10), 1–27. https://doi.org/10.1007/s42452-020-03497-1 [Crossref], [Google Scholar] Wang, R., Asghari, V., Cheung, C. M., Hsu, S. C., & Lee, C. J. (2022). Assessing effects of economic factors on construction cost estimation using deep neural networks. Automation in Construction, 134, 104080. https://doi.org/10.1016/j.autcon.2021.104080 [Crossref], [Google Scholar] Weisberg, S. (2005). Applied linear regression (Vol. 528). John Wiley & Sons. [Crossref], [Google Scholar] Yanik, E., Intes, X., Kruger, U., Yan, P., Diller, D., Van Voorst, B., … De, S. (2022). Deep neural networks for the assessment of surgical skills: A systematic review. The Journal of Defense Modeling and Simulation, 19(2), 159–171. https://doi.org/10.1177/15485129211034586 [Crossref], [Google Scholar] Zabin, A., González, V. A., Zou, Y., & Amor, R. (2022). Applications of machine learning to BIM: A systematic literature review. Advanced Engineering Informatics, 51, 101474. https://doi.org/10.1016/j.aei.2021.101474 [Crossref], [Google Scholar] Zhang, S., Bogus, S. M., Lippitt, C. D., & Migliaccio, G. C. (2017). Estimating location-adjustment factors for conceptual cost estimating based on nighttime light satellite imagery. Journal of Construction Engineering and Management, 143(1), 04016087. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001216 [Crossref], [Google Scholar] |
---|