Energy-economy analysis of a novel spiral channeled conical turbulator Inserted within the parabolic trough solar collector absorber tube

Journal article


Samad, S., Saeidlou, S., Mahariq, I., Kraiem, N., Alamry, A., Hoskeri, P. and Ghoushchi, S.P. 2025. Energy-economy analysis of a novel spiral channeled conical turbulator Inserted within the parabolic trough solar collector absorber tube. Case Studies in Thermal Engineering. 73 (106462). https://doi.org/10.1016/j.csite.2025.106462
AuthorsSamad, S., Saeidlou, S., Mahariq, I., Kraiem, N., Alamry, A., Hoskeri, P. and Ghoushchi, S.P.
Abstract

This study introduces a novel spiral channeled conical turbulator (SCCT) to enhance the hydrothermal and economic performance of a parabolic trough solar collector. Key design parameters, including spiral channel width (1–3 mm) and pitch (1–9 mm), are investigated, and the results are compared to those of a plain conical turbulator (PCT) and plain absorber tube. The inclined surfaces of the PCT and SCCT induce a strong radial flow, significantly improving heat transfer. Heat transfer and friction coefficients exhibit a direct correlation with spiral channel pitch but an inverse relationship with channel width. The PCT achieves the highest heat transfer enhancement, up to 550% over a plain tube. However, the SCCT’s aerodynamic geometry, enabled by its spiral channels, reduces pressure drop, yielding a higher and optimal performance evaluation criterion (PEC) compared to the PCT. The SCCT achieves a maximum PEC of 3.05 at a channel pitch of 5 mm and a width of 3 mm. This results in a 375% improvement in heat transfer and a 280% increase in the friction coefficient compared to plain absorber tubes. Economically, the PCT outperforms, with a levelized cost of energy (LCOE) of 0.405$/kWh and a payback time of 2.7 years. These results indicate that PCT is the optimal choice for heat transfer and economic performance, while SCCT is superior from a hydrothermal perspective.

KeywordsSolar collector; Renewable energy; Spiral channeled conical turbulator; Economic analysis; Heat transfer; Friction coefficient
Year2025
JournalCase Studies in Thermal Engineering
Journal citation73 (106462)
PublisherElsevier
ISSN2214-157X
Digital Object Identifier (DOI)https://doi.org/10.1016/j.csite.2025.106462
Official URLhttps://www.sciencedirect.com/science/article/pii/S2214157X25007221?via%3Dihub
Publication dates
Print06 Jun 2025
Publication process dates
Accepted04 Jun 2025
Deposited11 Jun 2025
Accepted author manuscript
License
File Access Level
Restricted
Publisher's version
License
File Access Level
Open
Output statusPublished
References

[1] B. Kumar, A. Awasthi, J. Lee, Y. Jeon, Case Stud. Therm. Eng. 66 (2025) 105783.
[2] T. Mhedheb, W. Hassen, A. Mhimid, M.A. Almeshaal, M. Alhadri, L. Kolsi, Case Stud. Therm. Eng. 51 (2023) 103652.
[3] R. Venkatesh, K. Karthik, M. Vinayagam, A. Verma, R. Chaturvedi, M.E.M. Soudagar, N.N. Bhooshanam, S. Al Obaid, S.A. Alharbi, J. Therm. Anal. Calorim.
(2024) 1–14.
[4] A.M. Abed, B. Kanabar, T. Ramachandran, A. Shankhyan, J.S. Chohan, A. Karthikeyan, D. Gupta, B. Salah, W. Saleem, Case Stud. Therm. Eng. (2025) 106186.
[5] M. Gholinia, A. Ghobadi, E. Shahcheraghi, M. Armin, International Journal of Thermofluids 25 (2025) 101028.
[6] Z. Wang, Z. Yuan, C. Du, Y. Liu, J. Wang, Case Stud. Therm. Eng. 34 (2022) 102063.
[7] T. Limboonruang, M. Oyinlola, D. Harmanto, N. Phunapai, Appl. Therm. Eng. 263 (2025) 125317.
[8] M. Khan, I.N. Alsaduni, M. Alluhaidan, W.-F. Xia, M. Ibrahim, J. Taiwan Inst. Chem. Eng. 124 (2021) 150–161.
[9] S. Alshehery, Q. Al Mdallal, A.A. Altohamy, L. Ben Said, M. Bouzidi, T. Alkathiri, L. Kolsi, Case Stud. Therm. Eng. 67 (2025) 105849.
[10] S.H. Raza, A. Qamar, F. Noor, F. Riaz, M. Usman, M. Farooq, M. Sultan, A.U. Rehman, A. Shahzadi, J.M. Andresen, Case Stud. Therm. Eng. 49 (2023) 103366.
[11] M.A.-R. Abu-Zeid, Y. Elhenawy, M. Bassyouni, T. Majozi, M. Toderas, O. Al-Qabandi, S.S. Kishk, Results Eng. 21 (2024) 101673.
[12] M. Nazeer, S. Saleem and M. W. Nazir, 2025, DOI: doi:10.1515/zna-2025-0015..
[13] I. Siddique, M. Irfan, M. Al-Dossari, A. Alqahtani, M. Nazeer, S. Saydaxmetova, Heat Transfer 54 (2025) 1070–1092.
[14] M. Nazeer, S.M. Almohammadi, N. Radwan, W. Ahmad, Zamm-Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und
Mechanik, vol.105, 2025 e202400397.
[15] S. Saleem, F. Hussain, M. Irfan, I. Siddique, M. Nazeer, S. Eldin, Case Stud. Therm. Eng. 48 (2023) 103140.
[16] M. Irfan, I. Siddique, M. Nazeer, S. Saleem, N. Radwan, Case Stud. Therm. Eng. 54 (2024) 104036.
[17] F. Hussain, M. Nazeer, M. Altanji, A. Saleem, M. Ghafar, Case Stud. Therm. Eng. 28 (2021) 101433.
[18] P. Saini, A. Dhar, S. Powar, Results in Engineering (RINENG) 21 (2024).
[19] E. Bellos, C. Tzivanidis, Appl. Energy 224 (2018) 86–102.
[20] H. Parlamıs¸, E. ¨Ozden, M.S. Büker, Sustain. Energy Technol. Assessments 47 (2021) 101562.
[21] A. Dezfulizadeh, A. Aghaei, G.A. Sheikhzadeh, Eng. Anal. Bound. Elem. 150 (2023) 507–527.
[22] K.A. Ahmed, E. Natarajan, Appl. Therm. Eng. 162 (2019) 114224.
[23] A.A. Al-Rashed, A.A. Alnaqi, J. Alsarraf, J. Taiwan Inst. Chem. Eng. 124 (2021) 192–204.
[24] M. Aliehyaei, A.H. Joshaghani, M.M. Najafizadeh, Eng. Anal. Bound. Elem. 150 (2023) 492–506.
[25] Z.A. Nawsud, A. Altouni, H.S. Akhijahani, H. Kargarsharifabad, Sustain. Energy Technol. Assessments 51 (2022) 101889.
[26] M. Malekan, A. Khosravi, S. Syri, Appl. Therm. Eng. 163 (2019) 114435.
[27] A. Kasaiean, M. Sameti, R. Daneshazarian, Z. Noori, A. Adamian, T. Ming, Renew. Energy 123 (2018) 439–449.
[28] S. Kakac, Y. Yener, A. Pramuanjaroenkij, Convective Heat Transfer, CRC press, 2013.
[29] M. Jafaryar, M. Sheikholeslami, Renew. Energy 198 (2022) 534–548.
[30] S. Alshehery, Q. Al Mdallal, A.A. Altohamy, L.B. Said, M. Bouzidi, T. Alkathiri, L. Kolsi, Case Stud. Therm. Eng. (2025) 105849.
[31] F. Vahidinia, A. Aghaei, H. Khorasanizadeh, Journal of Heat and Mass Transfer Research 12 (2025) 209–226.
[32] F. Vahidinia, H. Khorasanizadeh, A. Aghaei, Energy Engineering and Management 12 (2023) 82–95.
[33] A. Hosseini Esfahani, M. Aliehyaei, A. Hassani Joshaghani, M.M. Najafizadeh, Energy Engineering and Management 12 (2023) 80–99.
[34] A.M. Abed, B. Kanabar, T. Ramachandran, A. Shankhyan, J.S. Chohan, A. Karthikeyan, D. Gupta, B. Salah, W. Saleem, Case Stud. Therm. Eng. 71 (2025)
106186.

Permalink -

https://repository.canterbury.ac.uk/item/9v334/energy-economy-analysis-of-a-novel-spiral-channeled-conical-turbulator-inserted-within-the-parabolic-trough-solar-collector-absorber-tube

Download files


Publisher's version
Published Version.pdf
License: CC BY-NC-ND 4.0
File access level: Open

  • 4
    total views
  • 6
    total downloads
  • 4
    views this month
  • 6
    downloads this month

Export as

Related outputs

Effect of channel thickness on the particle diffusion and permeability of carbon nanotubes a membrane in reverse electrodialysis process using molecular dynamics simulation
Sun, S., Basem, A., Sawaran Singh, N., Al-Zahy, Y., Saeidlou, S., Muzammil, K., Salahshour, S., Sajadi, M. and Sahramaneshi, H. 2025. Effect of channel thickness on the particle diffusion and permeability of carbon nanotubes a membrane in reverse electrodialysis process using molecular dynamics simulation. International Communications in Heat and Mass Transfer. 166 (109155). https://doi.org/10.1016/j.icheatmasstransfer.2025.109155
Closing the gap in engineering education: A positive psychology approach to CDIO
Ghadiminia, N., Saeidlou, S. and Nortcliffe, A. 2025. Closing the gap in engineering education: A positive psychology approach to CDIO.
Using evolutionary algorithms and group method of data handling ANN for prediction of the viscosity MWCNT-ZnO /oil SAE 50 nano-lubricant
Liu, Z., Ali, A. B., Hussein, R. A., Singh, N. S. S., Al-Bahrani, M., Abdullaeva, B., Saeidlou, S., Salahshour, S. and Esmaeili, S. 2025. Using evolutionary algorithms and group method of data handling ANN for prediction of the viscosity MWCNT-ZnO /oil SAE 50 nano-lubricant. International Communications in Heat and Mass Transfer. 163, p. 108749. https://doi.org/10.1016/j.icheatmasstransfer.2025.108749
Cyber-physical system security for manufacturing industry 4.0 using LSTM-CNN parallel orchestration
Saeidlou, S., Ghadiminia, N. and Oti-Sarpong, K. 2025. Cyber-physical system security for manufacturing industry 4.0 using LSTM-CNN parallel orchestration. IEEE Access. https://doi.org/10.1109/ACCESS.2025.3525520
An inspiration for all time: Pioneer Verena Holmes' impact on future engineering practice
Saeidlou, S., Nortcliffe, A., Ghadiminia, N. and Ishaq, R. 2024. An inspiration for all time: Pioneer Verena Holmes' impact on future engineering practice. International Multidisciplinary Research Journal. 3, pp. 19-30. https://doi.org/10.47722/imrj.2001.33
Integrating AI into engineering education: Leveraging CDIO for enhanced assessment
Saeidlou, S., Nortcliffe, A., Ghadiminia, N. and Imam, A. 2024. Integrating AI into engineering education: Leveraging CDIO for enhanced assessment.
Practice-based engineering design for next-generation of engineers: A CDIO-based approach
Saeidlou, S., Ghadiminia, N., Nortcliffe, A. and Lambert, S. 2023. Practice-based engineering design for next-generation of engineers: A CDIO-based approach. in: The 19th CDIO International Conference: Proceedings - Full Papers
A digital approach to health and safety management on-site: A silver lining of the COVID-19 pandemic
Ghadiminia, N. and Saeidlou, S. 2023. A digital approach to health and safety management on-site: A silver lining of the COVID-19 pandemic. in: Manu, P., Cheung, C., Yunusa-Kaltungo, A., Emuze, F., Abreu Saurin, T. and Hadikusumo, B. (ed.) Construction Safety, Health and Well-being in the COVID-19 Era Routledge, Taylor and Francis.
A construction cost estimation framework using DNN and validation unit
Saeidlou, S. and Ghadiminia, N. 2023. A construction cost estimation framework using DNN and validation unit. Building Research & Information. 51 (3), pp. 241-368. https://doi.org/10.1080/09613218.2023.2196388
A hybrid clustering method based on the several diverse basic clustering and meta-clustering aggregation technique
Zhou, Bing, Lu, Bei and Saeidlou, Salman 2022. A hybrid clustering method based on the several diverse basic clustering and meta-clustering aggregation technique. Cybernetics and Systems. 55 (1), pp. 1-27. https://doi.org/10.1080/01969722.2022.2110682
Cybersecurity of smart buildings: a facilities management perspective
Ghadiminia, N. and Saeidlou, S. 2021. Cybersecurity of smart buildings: a facilities management perspective.
The legacy of Verena Holmes: inspiring next generation of engineers
Saeidlou, S., Ishaq, R., Nortcliffe, A. and Ghadiminia, N. 2021. The legacy of Verena Holmes: inspiring next generation of engineers.
Towards decentralised job shop scheduling as a web service
Saeidlou, S., Saadat, M. and Jules, G. D. 2021. Towards decentralised job shop scheduling as a web service. Cogent Engineering. 8 (1). https://doi.org/10.1080/23311916.2021.1938795
Ontology-based decision tree model for prediction in a manufacturing network
Khan, Z. M. A., Saeidlou, S. and Saadat, M. 2019. Ontology-based decision tree model for prediction in a manufacturing network. Production and Manufacturing Research. 7 (1), pp. 335-349. https://doi.org/10.1080/21693277.2019.1621228
Agent-based distributed manufacturing scheduling: an ontological approach
Saeidlou, S., Saadat, M., Sharifi, E. A. and Jules, G. D. 2019. Agent-based distributed manufacturing scheduling: an ontological approach. Cogent Engineering. 6 (1). https://doi.org/10.1080/23311916.2019.1565630
Knowledge and agent-based system for decentralised scheduling in manufacturing
Saeidlou, S., Saadat, M. and Jules, G. D. 2019. Knowledge and agent-based system for decentralised scheduling in manufacturing. Cogent Engineering. 6 (1). https://doi.org/10.1080/23311916.2019.1582309