A discussion of possibilities for establishing curriculum agility practices for industry ready graduates

Conference paper


Nortcliffe, A. and Lyng, R. 2023. A discussion of possibilities for establishing curriculum agility practices for industry ready graduates.
AuthorsNortcliffe, A. and Lyng, R.
TypeConference paper
Description

There is on-going work in the CDIO community to create a set of principles characterizing Curriculum Agility. At the CDIO conference in Kanazawa 2018, a first workshop on curriculum agility was held and this resulted in the following synthesized definition: An agile curriculum is responsive and adaptable to changes in society and industry, and to changing student characteristics and needs, by having the capacity to adjust structures, learning outcomes and learning activities where and when needed in a timely manner. The present version of Curriculum Agility is described by 10 principles, after discussions in a working group at the International CDIO Working Meeting 2022 in Turku, Finland. The work is still in progress and the final number of principles may change in the process of developing Curriculum Agility as a candidate for a future CDIO Standard. This round table agile curriculum design focus is on agile curriculum development through co-creation by students, staff, alumni and employers. Identifying examples of curriculum agility that are realistic and achievable to feature in future education curriculum development and support next generation of industry ready graduates.

KeywordsCDIO; Curriculum agility; Engineering education; Agile curriculum design
Year2023
Conference19th International CDIO Conference
Related URLhttps://cdio.org/content/proceedings-19th-international-cdio-conference
File
License
File Access Level
Open
Publication process dates
Deposited31 Oct 2024
Permalink -

https://repository.canterbury.ac.uk/item/98qyv/a-discussion-of-possibilities-for-establishing-curriculum-agility-practices-for-industry-ready-graduates

Download files


File
Curriculum Agility practices with industry v2.pdf
License: CC BY-NC-ND 4.0
File access level: Open

  • 0
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

GenAI in the hands of experts: A qualitative study of academics' experiences and future recommendations
Malik, M., Nortcliffe, A., Turner, S., Abdel-Maguid, M. and Shah, Rehan 2024. GenAI in the hands of experts: A qualitative study of academics' experiences and future recommendations .
An EDI engineering employability toolkit to aid engineering student progression
Nortcliffe, A., Fanusie, C., Matei, G., Makinde, M., Odev, S., Martin, E. and Eyres, S. 2024. An EDI engineering employability toolkit to aid engineering student progression.
How do we engineer inclusive education technology?
Nortcliffe, A. 2024. How do we engineer inclusive education technology?
Allyship education is key to EDI graduate engineering employment
Nortcliffe, A., Fanusie, C., Matei, G., Makinde, M., Odev, S., Martin, E. and Eyres, S. 2024. Allyship education is key to EDI graduate engineering employment. Royal Academy of Engineering.
Conceiving, designing, implementing and operating an EDI engineering employability learning toolkit to aid graduate employment
Nortcliffe, A., Fanusie, C., Matei, G., Makinde, M., Odev, S., Martin, E. and Eyres, S. 2024. Conceiving, designing, implementing and operating an EDI engineering employability learning toolkit to aid graduate employment.
Integrating AI into engineering education: Leveraging CDIO for enhanced assessment strategies
Nortcliffe, A., Saeidlou, S., Ghadiminia, N. and Imam, A. 2024. Integrating AI into engineering education: Leveraging CDIO for enhanced assessment strategies.
Potential practices for establishing curriculum agility through industrial engagement
Lyng, R. and Nortcliffe, A. 2024. Potential practices for establishing curriculum agility through industrial engagement.
Tailoring Poisson's ratio of a fabric using auextic structures
Robinson, B., Imam, A., Nortcliffe, A., Ahmed, A. and Sabir, T. 2024. Tailoring Poisson's ratio of a fabric using auextic structures.
Utilization of ChatGPT in CDIO projects to enhance the literacy of international students
Manna, S., Williams, S., Richmond-Fuller, A. and Nortcliffe, A. 2024. Utilization of ChatGPT in CDIO projects to enhance the literacy of international students.
Engineering learning of sustainable product lifecycle through CDIO
Nortcliffe, A., Imam, A. and Joyce, N. 2023. Engineering learning of sustainable product lifecycle through CDIO.
Is the future pipeline of education technology developers in jeopardy?
Nortcliffe, A. 2023. Is the future pipeline of education technology developers in jeopardy? Education Technology Insights.
Engineering learning of sustainable product lifecycle through CDIO
Imam, A., Joyce, N. and Nortcliffe, A. 2023. Engineering learning of sustainable product lifecycle through CDIO.
Practice-based engineering design for next-generation of engineers: A CDIO-based approach
Saeidlou, S., Ghadiminia, N., Nortcliffe, A. and Lambert, S. 2023. Practice-based engineering design for next-generation of engineers: A CDIO-based approach. in: The 19th CDIO International Conference: Proceedings - Full Papers
Integration of graduate employability skills through industry outsourced CDIO project
Manna, S., Joyce, N. and Nortcliffe, A. 2023. Integration of graduate employability skills through industry outsourced CDIO project. in: Lyng, R., Bennedsen, J., Bettaied, L., Bodsberg, N. R., Edstrom, K., Guojonsdottir, M. S., Roslof, J., Solbjord, O. K. and Oien, G. (ed.) The 19th CDIO International Conference: Proceedings - Full Papers NTNU SEED. pp. 425-435
How inclusive is VR to support EDI engineering curriculum learning?
Harrison, J., Forester, F., Ward, G., Tubby, M., Lithgow, P. and Nortcliffe, A. 2023. How inclusive is VR to support EDI engineering curriculum learning?
How are do you create an inclusive engineering graduate pipeline?
Nortcliffe, A. 2022. How are do you create an inclusive engineering graduate pipeline? Precision. June (24), pp. 8-11.
Evaluation of students’ performance in CDIO projects through blended learning
Manna, S., Battikh, N., Nortcliffe, A. and Camm, J. 2022. Evaluation of students’ performance in CDIO projects through blended learning.
Digital reality in supporting students' learning, the challenges and opportunities
Nortcliffe, A. 2021. Digital reality in supporting students' learning, the challenges and opportunities. Education Technology Insights.
The legacy of Verena Holmes: inspiring next generation of engineers
Saeidlou, S., Ishaq, R., Nortcliffe, A. and Ghadiminia, N. 2021. The legacy of Verena Holmes: inspiring next generation of engineers.
Adaptive and flexible online learning during Covid19 lockdown
Manna, S., Nortcliffe, A., Sheikholeslami, G. and Richmond-Fuller, A. 2021. Adaptive and flexible online learning during Covid19 lockdown.
Developing engineering growth mindset through CDIO outreach activities
Manna, S., Nortcliffe, A. and Sheikholeslami, G. 2020. Developing engineering growth mindset through CDIO outreach activities. in: Proceedings of the 16th International CDIO Conference Gothenburg, Sweden CDIO.
New approaches to engineering higher education: case studies
Nortcliffe, A., McIntosh, G. and Hernandez, E. 2019. New approaches to engineering higher education: case studies.
CDIO Open day learning activity to inspire the next generation of engineering applicants
Nortcliffe, A., Nortcliffe, A. and Sheikholeslami, G. 2019. CDIO Open day learning activity to inspire the next generation of engineering applicants.
Developing good practices for industrial engagement in co-creation of CDIO curriculum
Fortin, C, Nortcliffe, A. and Serreau, Y. 2019. Developing good practices for industrial engagement in co-creation of CDIO curriculum.
How accessible is the STEM post 16 education provision, the pipeline to computing and engineering programmes?
Nortcliffe, A., Stallard, J.A. and Barley, R. 2019. How accessible is the STEM post 16 education provision, the pipeline to computing and engineering programmes?
Statistically, does peer assisted learning make a difference on a UK engineering degree programme? HETL Scotland 2017
Nortcliffe, A., Parveen, S. and Keech-Pink, C. 2018. Statistically, does peer assisted learning make a difference on a UK engineering degree programme? HETL Scotland 2017. Journal of Applied Research in Higher Education. 14 (1), pp. 489-506. https://doi.org/10.1108/JARHE-04-2017-0047