Optical control of resonant light transmission for an atom-cavity system

Journal article


Sharma, A., Ray,T., Sawant, R. V., Sheikholeslami, G., Rangwala. R. and Budker, D. 2015. Optical control of resonant light transmission for an atom-cavity system. Physical Review A. 91 (4), p. 043824. https://doi.org/10.1103/PhysRevA.91.043824
AuthorsSharma, A., Ray,T., Sawant, R. V., Sheikholeslami, G., Rangwala. R. and Budker, D.
Abstract

We demonstrate the manipulation of transmitted light through an optical Fabry-Pérot cavity, built around a spectroscopy cell containing enriched rubidium vapor. Light resonant with 87 Rb 𝐷2 (𝐹=2,𝐹=1) ↔𝐹′ manifold is controlled by the transverse intersection of the cavity mode by another resonant light beam. The cavity transmission can be suppressed or enhanced depending on the coupling of atomic states due to the intersecting beams. The extreme manifestation of the cavity-mode control is the precipitous destruction (negative logic switching) or build-up (positive logic switching) of the transmitted light intensity on intersection of the transverse control beam with the cavity mode. Both the steady-state and transient responses are experimentally investigated. The mechanism behind the change in cavity transmission is discussed in brief.

KeywordsOptical control; Resonant light transmission; Atom-cavity system
Year2015
JournalPhysical Review A
Journal citation91 (4), p. 043824
PublisherAmerican Physical Society
ISSN2469-9926
2469-9934
Digital Object Identifier (DOI)https://doi.org/10.1103/PhysRevA.91.043824
Official URLhttps://journals.aps.org/pra/abstract/10.1103/PhysRevA.91.043824
Publication dates
Online15 Apr 2015
Publication process dates
Deposited12 Feb 2025
Accepted author manuscript
License
All rights reserved
File Access Level
Open
Output statusPublished
Permalink -

https://repository.canterbury.ac.uk/item/9q495/optical-control-of-resonant-light-transmission-for-an-atom-cavity-system

Download files


Accepted author manuscript
1503.08438v1.pdf
License: All rights reserved
File access level: Open

  • 1
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Effect of component geometry on the dynamic thermal field generated in the laser forming of AA6061-T6 sheet
Sheikholeslami, G. 2024. Effect of component geometry on the dynamic thermal field generated in the laser forming of AA6061-T6 sheet. Procedia CIRP. https://doi.org/https://www.sciencedirect.com/science/article/pii/S2212827124005365
Impact of CDIO framework pedagogical approach adoption on the student learning and experience
Nortcliffe, A., Matei, G., Malik, M., Manna, S., Sheikholeslami, G. and James, H. 2024. Impact of CDIO framework pedagogical approach adoption on the student learning and experience.
Micro-additive manufacturing technologies of three-dimensional MEMS
Hassanin, H., Sheikholeslami, G., Pooya, S. and Ishaq, R. 2021. Micro-additive manufacturing technologies of three-dimensional MEMS . Advanced Engineering Materials. https://doi.org/10.1002/adem.202100422
Adaptive and flexible online learning during Covid19 lockdown
Manna, S., Nortcliffe, A., Sheikholeslami, G. and Richmond-Fuller, A. 2021. Adaptive and flexible online learning during Covid19 lockdown.
Developing engineering growth mindset through CDIO outreach activities
Manna, S., Nortcliffe, A. and Sheikholeslami, G. 2020. Developing engineering growth mindset through CDIO outreach activities. in: Proceedings of the 16th International CDIO Conference Gothenburg, Sweden CDIO.
CDIO Open day learning activity to inspire the next generation of engineering applicants
Nortcliffe, A., Nortcliffe, A. and Sheikholeslami, G. 2019. CDIO Open day learning activity to inspire the next generation of engineering applicants.
Reverse analysis of scan strategies for controlled 3D laser forming of sheet metal
Gao, H., Sheikholeslami, G., Dearden, G. and Edwardson, S. P. 2017. Reverse analysis of scan strategies for controlled 3D laser forming of sheet metal. Procedia Engineering. 183, pp. 369-374. https://doi.org/10.1016/j.proeng.2017.04.054
Optimization of process parameters for high efficiency laser forming of advanced high strength steels within metallurgical constraints
Sheikholeslami, G., Griffiths, J., Dearden, G. and Edwardson, S. P. 2016. Optimization of process parameters for high efficiency laser forming of advanced high strength steels within metallurgical constraints. Physics Procedia. 83, pp. 277-285. https://doi.org/10.1016/j.phpro.2016.08.025
Goal driven optimization of process parameters for maximum efficiency in laser bending of advanced high strength steels
Griffiths, J., Riley, M. J. W., Sheikholeslami, G., Edwardson, S. P. and Dearden, G. 2015. Goal driven optimization of process parameters for maximum efficiency in laser bending of advanced high strength steels. Key Engineering Materials . 639, pp. 115-122. https://doi.org/10.4028/www.scientific.net/KEM.639.115
Optimization of beam mode for high efficiency laser thermal forming within metallurgical constraints
Edwardson, S. P., Griffiths, J., Sheikholeslami, G. and Dearden, G. 2014. Optimization of beam mode for high efficiency laser thermal forming within metallurgical constraints. Physics Procedia. 56, pp. 1392-1399. https://doi.org/10.1016/j.phpro.2014.08.069
Laser forming of ERW steel square tubes within metallurgical constraints
Sheikholeslami, G., Griffiths, J., Edwardson, S. P., Watkins, K. and Dearden, G. 2013. Laser forming of ERW steel square tubes within metallurgical constraints. Key Engineering Materials . 549, pp. 68-75. https://doi.org/10.4028/www.scientific.net/KEM.549.68