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A B S T R A C T

In line with the global mission in achieving the net zero target through deployment of renewable energy tech-
nologies and electrifying the transportation sector; precise and adaptable State of Charge (SOC) estimation for
Lithium-ion batteries has emerged as a critical need. The paper introduces a novel Cluster-Based Learning Model
(CBLM) framework that integrates the strengths of K-Means and Fuzzy C-Means clustering with the predictive
power of Long Short-Term Memory (LSTM) networks. This approach aims to enhance the precision and reli-
ability of battery SOC estimations, adapting to the dynamic and complex operational conditions characteristic of
Li-ion batteries. The key contributions of this study are the development and validation of the CBLM framework,
which was proven to outperform state-of-art standalone deep learning techniques particularly under diverse
operational conditions. Additionally, the introduction of a centroid proximity selection mechanism within the
CBLM framework, which dynamically selects the most appropriate cluster model in real-time based on the
proximity of the operational data to the cluster centroids. The performance of the proposed CBLM approach is
evaluated using a Tesla Model 32,170 Li-ion battery dataset. Results demonstrate the model’s enhanced per-
formance, with reductions in Root Mean Square Error (RMSE) to as low as 0.65 % and Mean Absolute Error
(MAE) to 0.51 %, reducing state-of-art benchmark model errors by margins of 61.8 % and 68.5 % respectively.
Additionally, the maximum error using CBLM was lower than benchmark, emphasising the model’s reliability in
worst-case-scenarios. The study also conducted comprehensive ablation tests on the proposed novel framework
to further optimize its performance.

1. Introduction

With the growing electrification of various sectors, including trans-
portation, there is a rising demand for Lithium-ion (Li-ion) batteries.
This was reflected by the International Energy Association’s 2023 report
which documented a 65 % increase in Li-ion battery demand within the
automotive sector in 2022 compared to the previous year [1]. This surge
is a result to the widespread adoption of electric and hybrid vehicles. In
2022, Europe emerged as a significant player in this market, accounting
for about 23 % of the global demand for automotive Li-ion batteries,
making it the second-largest market after China, which held nearly 57 %
of the worldwide demand [1].

Furthermore, as the global shift towards renewable energy sources
for electricity generation continues, with the goal of achieving net-zero
emission targets set by governments, Battery Energy Storage Systems
(BESS) have become increasingly crucial. As a key component of this
shift, lithium-ion batteries are being extensively deployed in major

markets for a variety of applications. These include managing the
intermittency of wind and solar photovoltaic (PV) energy generation,
offering ancillary services to maintain grid stability, and other related
uses [2]. This broad adoption is driven by the need to effectively inte-
grate clean energy sources into the grid mix, ensuring a consistent and
reliable energy supply while advancing towards environmentally sus-
tainable goals.

The increasing reliance on lithium-ion batteries, while crucial for the
transition to cleaner energy, also raise concerns regarding their safety
and reliability. Ensuring these batteries operate within safe limits is
essential to prevent issues like overcharging, thermal runaway, and
degraded performance [3], which do not only pose safety risks but also
affect the longevity and efficiency of the batteries. In addition to SOC’s
importance in ensuring longevity and reliable performance of batteries,
misestimating SOC could lead to financial implications. BESS operators
who provide services to the grid including frequency regulation, backup
power or load levelling which are critical services for maintaining the
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stability of the electrical grid, are one of the key entities that could be
impacted by the consequences of SOC misestimation. Entities in this
market are contracted with the grid to provide predefined level of power
output; therefore, underestimating or overestimating the batteries’ SOC
could result in underperformance leading to financial penalties and in
extreme scenarios, it could lead to exclusion from market [4]. Similarly,
incorrect estimation of SOC enforces faulty trading decisions which re-
sults in less optimal usage of battery assets and hence reduced revenue.

This necessitates precise monitoring and management of the bat-
tery’s SOC, a key indicator of its health and operational status. SOC can
be defined as the ratio of the current available capacity in relation to the
battery’s maximum capacity [5], as demonstrated in Eq. (1),

SOC(%) =

(
Qcurrent
Qmaximum

)

×100 (1)

where Qcurrent is the current charge of the battery in ampere-hours (Ah),
Qmaximum is the maximum charge capacity of the battery, also in Ah and
SOC(%) is expressed as a percentage, indicating the current charge level
relative to the battery’s maximum capacity.

Unlike battery parameters like voltage, current and temperature,
measuring the current charge of the battery while its operating is chal-
lenging, which necessitates utilising estimation methods instead [6].
Measurable battery parameters are of great help in terms of estimating
SOC; yet understanding the relationship among battery parameters,
including current, voltage, temperature, and SOC becomes a complex
task due to the uncertainties in electrochemical and thermodynamic
reactions lithium-ion batteries and their nonlinear dynamics [7]. M. A.
Hannan et al. have discussed the challenges of SOC estimation in terms
of operational conditions and states that since batteries in various ap-
plications are not always performing in the same charge/discharge rate
which significantly affects SOC estimation [8].

This paper introduces a novel SOC estimation approach. The primary
contribution of this study lies in the development and validation of a
novel Cluster-Based Learning Model (CBLM) framework that integrates
the strengths of K-Means and Fuzzy C-Means clustering with the pre-
dictive power of LSTM. This innovative approach enhances the precision
and reliability of battery SOC estimations, adapting to the dynamic and
complex operational conditions characteristic of lithium-ion batteries.
The novelty of this research is further underscored by the introduction of
a centroid proximity selection mechanism within the CBLM framework.
This mechanism is instrumental in assigning the corresponding cluster
model for real-time SOC estimation.

This paper introduces a novel SOC estimation approach. The primary
contribution of this study lies in the development and validation of
CBLM framework that integrates K-Means clustering with LSTM net-
works to reduce the margin of estimation errors resulting of the tradi-
tional SOC estimation techniques and the advanced data driven
methods, particularly under diverse operational conditions. Although
clustering combined with neural networks has been investigated in
other research domains, such as medical imaging, these implementa-
tions were not designed for real-time, regression-based estimation tasks.
In fields like medical imaging, clustering is used for classification or
segmentation tasks, which differ fundamentally from the continuous,
real-time prediction required for SOC estimation of lithium-ion batte-
ries. Additionally, a dynamic model assignment mechanism that selects
the most appropriate cluster model in real-time based on the proximity
to pre-defined directory of cluster centroids. This mechanism dynami-
cally selects the most appropriate cluster model in real-time based on the
proximity of the operational data to the cluster centroids. By continu-
ously adapting to the closest cluster, this approach significantly im-
proves the adaptability and precision of SOC estimation, especially
under rapidly changing operational conditions.

The remainder of this paper is structured as follows: Section 2 re-
views existing SOC estimation methods and the use of CBLM in various
applications. Section 3 outlines the methodology, including dataset

preparation, clustering, and LSTM model development. Section 4 pre-
sents the experimental results, such as optimal cluster identification and
performance evaluation of the proposed CBLM. Section 5 discusses the
findings, advantages, limitations and results of robustness tests (ablation
test) of the CBLM approach. The conclusion summarises the contribu-
tions and proposes future research directions.

2. Literature review

Awide range of methodologies have been explored for estimating the
SOC of batteries, including approaches grounded in characteristic pa-
rameters, ampere-hour integration, data-driven models, and other
model-based techniques. The precision of SOC estimation is pivotal, as it
directly influences the optimization of battery performance and plays a
critical role in ensuring the reliability of energy storage systems. Ac-
cording to [9], SOC estimation methods can be classified broadly to the
following: Coulomb Counting [10], Look Up Table [11], Model Based
[3,12], Data Driven [13] and Hybrid Models [14]. Coulomb counting
and direct measurement techniques have been commonly used because
of their simplicity. However, these approaches can accumulate errors
and struggle to estimate with high precision under various operating
conditions. The Coulomb counting method is widely used in industry
however it is liable to significant errors due to initial misestimation of
SOC and sensor inaccuracies [15]. Equivalent circuit models, such as
Thevenin’s model, provide a more detailed view of battery dynamics but
face challenges in identifying parameters and are sensitive to noise [16].
In addition, the Extended Kalman Filter has been widely used for SOC
estimation because it can deal with nonlinearities and uncertainties.
However, EKF-based approaches need precise battery models and as-
sume Gaussian noise, which might not be realistic in real-life situations
[17]. This could result in notable estimation errors. Likewise, the com-
bination of Unscented Kalman Filter with machine learning models has
been employed to improve SOC estimation accuracy, but these methods
may have limitations when applied in real-time scenarios due to their
complexity [18].

Particularly, data-driven methods have earned significant attention
due to their ability to adapt to the complex, non-linear behaviour of
batteries, combined with the advantage of avoiding complex modelling
and initial parameter identification, offering enhanced accuracy in SOC
estimation [19]. Among the spectrum of data-driven techniques, neural
network models have emerged as particularly promising in SOC esti-
mation. According to a comprehensive review conducted by [20], which
highlighted the benefits and drawbacks of data-driven SOC methods;
neural network methods emerge as particularly promising for SOC
estimation in lithium-ion batteries due to their advantages in dealing
with the dynamic and non-linear nature of battery behaviour and suc-
cessful operation under long-term dependencies, making them more
suitable for SOC estimation compared to other methods like Decision
Forests (DF) or Support Vector Machines (SVM). Numerous SOC esti-
mation methods for lithium-ion batteries leveraging neural networks
have been proposed [21–24], reflecting a growing trend towards uti-
lising these advanced computational models for their capability of
handling the complexities of battery behaviour.

The need for advanced SOC estimation methods that can adapt to
diverse and real-world operational conditions is underscored by recent
literature. [7,25] have emphasised the limitations of existing ap-
proaches that often rely on fixed charging and discharging currents,
which do not accurately reflect actual battery usage. These observations
suggest the need for models that can account for time-varying currents
to enhance the applicability and accuracy of neural network methods in
SOC estimation.

[13] conducted a study to estimate SOC using a Long Short-Term
Memory (LSTM) neural network and compared its performance
against other neural networks architecture; the findings showed that the
LSTM model exhibited superior accuracy in SOC estimation, achieving
<0.62 % of maximum standard error (MSE), outperforming Deep-Feed-
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Forward Neural Network (DFFNN) and Feed-Forward Neural Network
(FFNN), which recorded MSEs of 5.37 % and 4.03 %, respectively. This
leads to a conclusion that LSTM models are highly effective for SOC
estimation; however, authors also recommended further investigation
into the performance of the model across challenging operational con-
ditions. A study by [26] introduced a Bi-LSTM neural network for ac-
curate SOC estimation in lithium-ion batteries. Using a dataset at 0 ◦C,
10 ◦C, and 25 ◦C, the Bi-LSTM model demonstrated superior accuracy,
with MAEs of 0.498 %, 0.411 %, and 0.738 %, and an overall MAE of
0.616 % across temperatures. The results, including a maximum error of
3.8 %, highlight the model’s robustness and its significant improvement
over existing methods like GRU networks in SOC estimation. Further-
more, [27] proposed a method that combines Temporal Convolutional
Network (TCN) and LSTM referred to as the TCN-LSTM model, that is
aimed to extract spatial features and long-term dependencies from
battery data. The model demonstrated superior performance across
various conditions, with an MAE of 0.48 %, RMSE of 0.60 %, and
maximum error of 2.3 % under multiple temperature scenarios, out-
performing standalone LSTM, TCN, and CNN-LSTM networks. SOC
estimation has significantly improved with the use of machine learning
and hybrid methods, but limitations related to real-time applicability,
robustness, and adaptability under diverse conditions remain. Accord-
ing to [15], despite the major advances, SOC data-driven estimation
models still face limitations in generalisability across different opera-
tional conditions.

Clustering-based learning models have demonstrated promising re-
sults in a diverse array of research fields, highlighting their adaptability
and effectiveness. These models combine clustering techniques with
advanced learning algorithms and have been applied to solve complex
problems. This approach has led to significant improvements in accu-
racy and efficiency, as it tailors the learning process to the specific
characteristics of each cluster. Such advancements in clustering-based
learning models offer promising methodologies that can be adapted to
enhance SOC estimation in lithium-ion batteries particularly with
challenges of SOC estimation in diverse operational conditions.

[28] presents a method for short-term power load forecasting for
larger consumers, leveraging LSTM deep learning framework K-Means
clustering algorithm. The approach involves clustering users based on
electrical attributes to create “load curves” for each cluster, representing
different types of consumers. Compared with the traditional LSTM al-
gorithm, K-Means LSTM model has significantly improved load fore-
casting, reducing the MAE by 5.12 %. Another significant study by [29]
introduced an Improved multi-stage LSTM network with Clustering
(ILSTMC) model which integrates the benefits of K-Means clustering and
LSTM networks to enhance RUL prediction of aero-engines with higher
accuracy. The proposed model integrates the benefits of clustering
analysis (K-Means clustering) and LSTM networks to enhance Remain-
ing Useful Life (RUL) prediction. The results show that, in the last stage
of prediction, the ILSTMC model achieves a 0.85 % reduction in RMSE
compared to LSTM. On average, across all stages, the RMSE reduction is
1.87 %, and the accuracy of the life cycle prediction is improved by 0.59
% over LSTM, with an average improvement of 1.84 % at each stage.

Fusion of clustering algorithms and advanced learning algorithms
have not only enhanced regression tasks as discussed but also improved
the performance of classification capabilities. [30] applied K-Means
clustering and an improved deep learning model for diagnosing common
corn leaf diseases. The pre-processing of images with clustering mark-
edly improved model performance in disease classification and diag-
nosis. Extending to medical applications, [31] proposed a novel method
for brain tumor segmentation and classification, combining K-Means
clustering with deep learning. Their method, using a finetuned VGG19
model, achieved improved accuracy in tumor classification, showcasing
the potential of clustering and deep learning in medical image analysis.
Collectively, these studies showcased significant potential of clustering-
based learning models in diverse domains of research, ranging from
power forecasting to medical image analysis, in dealing with complex

data-driven tasks with high effectiveness and adaptability. The proven
ability of these models in identifying patterns within segmented clusters
and apply targeted learning strategies to each could potentially solve a
key challenge in SOC estimation which is dealing with diverse opera-
tional conditions and usage patterns and the non-linear behaviour of Li-
ion batteries.

This literature review confirms the increasing importance of accurate
SOC estimation in lithium-ion batteries which is considered a critical
element for the reliability of modern energy storage systems. The evi-
dence shows that data-driven approaches, especially neural networks
like the LSTMmodels, are particularly effective in understanding battery
behaviour with no to minimal feature engineering. Combining these
models with clustering techniques is a promising development,
providing a clearer insight into different battery operational states. This
study builds on this knowledge by introducing a CBLM that leverages the
detailed analytics of LSTM and the data segmentation of clustering
algorithms.

3. Methodology

This section describes the sequence of procedures employed in this
study, as illustrated in Fig. 1. Initially, data cleaning eliminates over-
lapping timestamps, ensuring data integrity. Subsequently, data parti-
tioning segments the dataset for training and validation, ensuring robust
model training and effective validation. Data clustering then cluster the
dataset into distinct groups, followed by data pre-processing, which
prepares the data for the LSTM model. The model development phase
constructs the LSTM network to process the sequential data and capture
the battery’s SOC behaviours. The final stage, dynamic estimation, ap-
plies a Centroid Proximity Mechanism using the trained models for each
cluster for accurate SOC estimation. Further details of each step are
explored in Sections 3.1 to 3.6.

3.1. Dataset

This study utilised data obtained from the 4.5 Ah ‘m80’ cell of a Tesla
Model 32,170 lithium-ion battery, Nickel Cobalt Aluminium (NCA)
chemistry, collected under 0 ◦C ambient conditions at McMaster Uni-
versity [32]. Testing was conducted in a 16 ft3 Envirotronics SH16C
thermal chamber with a temperature control accuracy of +/− 0.3 ◦C,
using an eight-channel, 60 A/channel Arbin cell cycler that ensures
precise control over voltage and current.

The dataset encompasses a wide array of characterisation tests,
including controlled discharge rates and Hybrid Pulse Power Charac-
terisation (HPPC), aimed at capturing the fundamental properties of the
battery. Additionally, various driving cycles were executed, including
well-established ones such as UDDS, HWFET, LA92, and US06, as well as
custom-designed cycles. Additionally, randomized cycles were intro-
duced to simulate real-world driving patterns. This comprehensive set of
both standard and specialized tests offers a comprehensive view of
battery performance, facilitating the development of an accurate SOC
estimation model capable of estimating SOC under a range of diverse
operational conditions and usage patterns.

Table 1 provides a comparative overview of studies that used ma-
chine learning algorithms for battery SOC estimation that have specif-
ically used the same dataset as our study. This includes various data-
driven techniques employing neural that are directly comparable to
our proposed CBLM framework. The table contrasts these studies based
on their employed estimation techniques and key innovative
contributions.

3.2. Data cleaning

This stage involved the transformation of MATLAB (.mat) files into
structured DataFrames using Python’s Pandas library. Each DataFrame
included key parameters such as time, voltage, current, SOC, and battery

M.K. Al-Alawi et al.



Journal of Energy Storage 97 (2024) 112866

4

temperature, in addition to the calculation of C-rate from the current
data, which is It is a measure that indicates how fast a battery is being
charged or discharged in relation to its maximum capacity. During the
data processing phase, the presence of overlapping timestamps across
different test files necessitated the selective exclusion of certain files to
maintain data integrity and consistency. Specific filtering conditions
were applied to address these overlaps. For the file named ‘8_C_20_Dis-
charge_Charge_10–03-21_13.24’, data points were retained only if the
‘Time’ value was less than or equal to 330,507. Conversely, for the file
‘9_CC_CV_charge_10–11-21_03.21’, data points were kept only if the
‘Time’ value was>330,507. These measures were important in ensuring
that only non-overlapping, relevant data are included. Despite this, the
retained data provides a robust foundation for the analysis of the SOC
behaviour of the m80 cell under the specified ambient temperature
condition, covering diverse operational scenarios. Fig. 2 demonstrates
that thorough data cleaning was implemented ensuring continuity and
validates that the C-rate distribution is variable and represents diverse
operational conditions.

Fig. 1. Flowchart of the CBLM methodology for SOC using LSTM and centroid proximity.

Table 1
Comparative overview of machine learning approaches for battery SOC estimation using the same dataset.

Study Data driven using neural
networks

Algorithm Clustering Contribution

[33] ✓ FFNN and Nonlinear Autoregressive Exogenous
(NARX) network

⨯ Demonstrated the benefit of using NARX for its robustness against
current sensor errors.

[34] ✓ Multi-layer perceptron (MLP) ⨯ Highlighted the effectiveness of MLP in SOC Estimation
This
Study

✓ LSTM ✓ Novel integration of clustering with LSTM and dynamic centroid
proximity mechanism

Fig. 2. C-rate over time for the battery data used.
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3.3. Data partitioning

In order to establish a robust validation framework for the proposed
cluster-based learning model, a discontinuous mixed sampling (DMS)
method was employed for partitioning the cleaned dataset into training
and validation sets. The rationale behind portioning the data is to use
training data for the development of the model, while the validation
data are kept aside for the final stage, to assess the performance of the
dynamic estimation using the cluster-based learning model. DMS re-
flects a more rigorous test environment, presenting the model with non-
sequential data to evaluate its robustness against sudden and unex-
pected changes in working conditions as demonstrated in Fig. 3, where
validation data is represented in red and training data is represented in
blue.

3.4. Clustering

Clustering is an essential component in the proposed cluster-based
learning model for SOC estimation to segment battery data into
insightful clusters for specialized learning. The choice of K-Means
clustering algorithm as a candidate was based on several factors; mainly
the widespread use of the algorithm and its effectiveness in providing
meaningful segments that resulted in enhanced estimation for both
regression and classification tasks in diverse research domains as dis-
cussed in the literature. Furthermore, K-Means is well-known for its
simplicity and low computational complexity requirements, making it a
suitable algorithm to implement the proposed approach [35]. The al-
gorithm assigns each datapoint into one distinct cluster, based on its
proximity to the centroid of the cluster, ensuring clear and non-
overlapping groups of battery data. For comparative analysis and to
address the nature of battery data complexity, Fuzzy C-Means (FCM)
clustering was also implemented, which is a soft clustering algorithm.
Implementing the novel SOC estimation approach using the mentioned
clustering algorithms offer a more detailed analysis of battery
behaviour.

A fundamental step was determining the optimal number of clusters,
‘k’, for both algorithms as this directly influences the quality and
effectiveness of the clustering process. Therefore, specific cluster quality
assessment techniques were employed tailored for each algorithm.

a. K-Means Cluster Quality Metrics [36]:
• Within-Cluster Sum of Squares (WCSS): measures cluster
compactness, by quantifying the variance within each cluster with
lower WCSS values indicating tighter clustering.

• Davies-Bouldin (DB): evaluates the average similarity between
clusters, where a lower value suggests better separation between
clusters.

• Calinski-Harabasz indices (CH): assesses the ratio of between-
cluster variance to within-cluster variance, where higher values
are indicative of well-separated and distinct clusters.

For optimal choice of number of clusters, the average score is
calculated using Eq. (2), where lowest average score indicates better
clustering performance,

Average Score =
Normalised (WCSS+ DB+ Inverted CH)

3
(2)

b. FCM Cluster Quality Metrics:
• Fuzzy Partition Coefficient (FPC): evaluates the clarity of cluster
boundaries, with higher FPC values denoting more distinctly
defined clusters [37].

• Fuzzy Entropy Coefficient (FPE): provides insight into the
randomness in grouping data points, where lower FPE values
signify well-structured and reliable clusters [37].

• Xie-Beni: as discussed by [38], it focuses on assessing cluster sep-
aration and compactness, striving for the smallest XB value for
optimal clustering.

For optimal choice of number of clusters, the average score is
calculated using Eq. (3), where lowest average score indicates better
clustering performance,

Average Score =
Normalised (Inverted FPC+ FPE+ XB)

3
(3)

For clustering, raw battery features including Voltage, Current,
Battery Temperature and C_rate are used. Following successful clus-
tering, cluster labels are added to the original data frame and data are
segmented to the respective cluster accordingly.

3.5. Learning model development

LSTM networks are a type of recurrent neural network (RNN)
designed to capture and learn long-term dependencies within sequential
input data [39]. These networks have demonstrated their effectiveness
in a variety of applications including 3D human action recognition [40],
rainfall-runoff modelling [39], and stock price prediction [41]. The
LSTM model was chosen to implement the proposed SOC estimator. In

Fig. 3. SOC variation over time for a selected window highlighting training and validation data.
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contrast to traditional RNNs, LSTM networks are equipped with gating
mechanisms that control the flow of data, allowing them to selectively
remember or forget specific information over long sequences [42]. This
functionality underpins the LSTM’s notable accuracy in SOC estimation
tasks, as corroborated by the literature. This decision was based on the
LSTM’s proven high accuracy in SOC estimation, as evidenced in the
literature. Additionally, the LSTM architecture is capable of handling the
temporal dependencies and complex, non-linear nature of battery
behaviour, making it a suitable choice for accurately modelling SOC
dynamics [43].

The hyperparameters used to build and train the LSTM models are
presented in Table 2. Research has proved that neural networks with a
single hidden layer can achieve robust performance in SOC estimation
[44]. Additionally, findings by [45] demonstrated that increasing the
number of LSTM hidden layers led to reduced SOC estimation accuracy,
highlighting the trade-off between model complexity and performance.
Therefore, the model developed in this study has one LSTM hidden layer
with 50 neurons, providing a balance between model complexity and
computational demand. To avoid model overfitting, 0.2 was set as the
dropout rate. Furthermore, the training parameters were selected to
align with the available computational resources without compromising
on the training performance. These hyperparameters were consistent
across all LSTM models for the CBLM and the Benchmark models.

3.6. Dynamic estimation with cluster-based learning model

3.6.1. Cluster assignment mechanism
The Cluster Assignment Mechanism is an essential component of the

proposed SOC estimation model, facilitating dynamic and real-time SOC
prediction. This mechanism operates based on a directory that stores the
centroids for each cluster, which represent the average values of the
features (Voltage, Current, Temperature, and C-rate) for the data points
within each cluster. The selection of the appropriate cluster model for a
given test datapoint is determined through the computation of the
Euclidean distance between the datapoint and each cluster’s centroid
using Eq. (4)

EuclideanDistance=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Vi − Vc)2+(Ii − Ic)2+(Ti − Tc)2+(Cratei − Cratec)2
√

(4)

where, Vi and Vc are the voltage of the test datapoint and the voltage
centroid of the cluster, respectively. Ii and Ic are the current of the test
datapoint and the current centroid of the cluster, respectively. Ti and Tc
are the temperature of the test datapoint and the temperature centroid of
the cluster, respectively. Cratei and Cratec are the C-rate of the test
datapoint and the C-rate centroid of the cluster, respectively.

This distance metric quantifies the similarity between a given test
datapoint and the characteristic centre of each cluster. The test data-
point is then assigned to the cluster whose centroid is closest, i.e., the
cluster with the minimum Euclidean Distance to the datapoint. This
nearest centroid effectively determines the most similar operational
condition represented by the cluster, thereby selecting the most appro-
priate cluster model for SOC estimation. The dynamic nature of this
mechanism allows the model to adapt to changing operational

conditions, ensuring high accuracy and reliability in SOC estimation.

3.6.2. Performance evaluation metrics
To rigorously evaluate the performance of the proposed CBLM for

SOC estimation, three key metrics were employed: Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), and Maximum Error (Max
Error). Each metric provides a unique perspective on the model’s ac-
curacy and reliability, essential for validating the effectiveness of the
proposed approach. RMSE is a standard metric used to measure the
model’s accuracy by calculating the square root of the average squared
differences between the actual and predicted SOC values as defined in
Eq. (5),

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(SOCi − ŜOCi)2

√

(5)

where, n represents the number of observations, SOCi is the actual SOC
value and ŜOCi is the estimated SOC value for the ith observation. RMSE
is a useful metric in this case as it gives a relatively high weight to large
errors, ensuring the model’s precision across the entire battery dataset.
MAE quantifies the average magnitude of SOC estimation errors as
defined in Eq. (6),

MAE =
1
n
∑n

i=1
|SOCi − ŜOCi | (6)

It is a keymetric in evaluating the performance of the SOC estimation
model as it provides insights on the consistency of the estimation per-
formance without being overly influenced by few large errors. The Max
Error identifies the largest single error in SOC estimation as defined in
Eq. (7),

Max Error = Max(|SOCi − ŜOCi |) (7)

It is another key metric as it assesses the reliability of the estimation
model, particularly under extreme or worst-case conditions, ensuring
the model’s capability in maintaining accuracy even in challenging
instances.

4. Experimental results and settings

4.1. Settings

4.1.1. Optimal number of clusters (k) identification
The WCSS metric shows a decreasing trend as the number of clusters

increases, which is indicative of improved compactness within clusters.
The significant drop from k = 2 to k = 3 suggests a substantial
improvement in cluster compactness, making these cluster sizes of
particular interest. The DB Score, which assesses the separation between
clusters, is lowest (indicating better separation) at k= 3, suggesting that
three clusters achieve a good balance between separation and
compactness. The gradual increase in the DB Score beyond indicates
diminishing returns in terms of cluster separation quality. The CH Score,
which evaluates the validity of clustering by comparing within-cluster
dispersion to between-cluster dispersion, shows an improvement as
the number of clusters increases from k = 2 to k = 4. This suggests that
four clusters might offer an optimal balance between compactness and
separation. The transition form k = 5 to k = 6 resulted in a reduction in
the CH score, indicating better clustering validity (Fig. 4).

The FPC Scores remain high at k = 2 and k = 3, indicating a strong
degree of cluster membership certainty for these cluster sizes. The
decrease in FPC Scores as the number of clusters increases beyond k = 4
suggests that the clarity of cluster membership diminishes, making k ≤4
of particular interest. The FPE Scores, which assess the overall perfor-
mance of the clustering, are lowest (indicating better performance) at k
≤4. This aligns with the FPC Scores and suggests that these cluster sizes
are optimal in terms of performance. The Xie-Beni Score, which measure

Table 2
Hyperparameter settings of the LSTM models.

Type Parameter Description Setting

Network
structure

Hidden
layers

Number of LSTM layers 1

Neurons Number of neurons in the LSTM layer 50
Dropout rate Rate of dropout to prevent overfitting 0.2

Training
process

Optimizer Algorithm for optimization ‘adam’
Epochs Number of complete iterations

through the dataset
20

Batch size The batch size for training 32
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the compactness and separation of fuzzy clusters, was the lowest at k= 6
suggesting better-defined clusters.

Therefore, based on the quality metrics findings of both clustering
algorithms, the study selects k = 2, k = 3, k = 4 and k = 6 for further
investigation as potential optimal clusters. For K-Means, the selection is
driven by the balance between cluster compactness and separation, with
k = 3 and k = 4 showing optimal cluster validity. For FCM, the focus on
k = 2 and k = 3 is justified by the high degree of cluster membership
certainty and performance, with k = 4 also considered due to its rela-
tively strong performance across metrics. The inclusion of k = 6 for
further investigation acknowledges the potential for insights into the
limitations and challenges of clustering at higher cluster sizes, particu-
larly for the FCM algorithm.

4.1.2. Cluster distribution visualization
This section presents a detailed visualization of cluster distributions

derived from the K-Means clustering algorithm applied to our SOC
estimation model. Each cluster represents a unique operational condi-
tion of the battery, differentiated by characteristics such as charging
behaviour, temperature variability, and C-rate variability. Through the
use of box plots for each cluster across different values of k= 2, 3, 4, and
6, it is aimed to provide a visual interpretation of how the battery’s
operational states are segmented by the clustering process. This visual-
ization serves as a pivotal step towards understanding the relationship
between cluster characteristics and SOC estimation accuracy, ultimately
guiding the selection of an optimal k value for precise SOC prediction.

Fig. 5 illustrates the distribution of C-rate and temperature across
different clusters defined by the K-Means clustering algorithm for

various k-values. The box plots in this figure provide a visual repre-
sentation of the operational conditions of battery usage, such as
charging rates and temperature ranges of each cluster as segmented by
the clustering algorithm. These plots display the mean (μ), standard
deviation (σ), and range of conditions within each cluster, emphasising
the diversity and similarity of operational patterns across different
clusters. Table 1 synthesises the analysis of central tendencies (μ) and
variability (σ) clusters offering a clearer understanding of the specific
battery behaviours in each cluster. These interpretations correlated
along with the SOC estimation performance of the CBLM models would
provide valuable insights on the impact of operational state segmenta-
tion on the accuracy and reliability of the estimation models.

4.2. Results

This section presents the SOC estimation results using the proposed
cluster-based LSTMmodels for various number of clusters, k= 2,3,4 and
6, for both clustering algorithms, namely, K-MEANS and FCM. The
performance of each cluster-based LSTM model is evaluated using key
metrics including RMSE, MAE and Max Error and compared against the
benchmark model.

4.2.1. K-Means
Fig. 6 shows the estimated SOC against actual SOC over time (s) for

K-MEANS-LSTM CBLM model with the corresponding cluster assign-
ment subplot for different values of k. It is evident that the variation in
value of k during cluster impacts the estimation accuracy; for instance,
the performance of the model k = 4 was able to maintain a better SOC

(a) (b)
Fig. 4. Normalized clustering metrics for optimal number of clusters selection for (a) K-Means and (b) FCM, ranging from k = 2 to k = 10. The figure compares
cluster quality metrics for each clustering algorithm, each with a merged average score.
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estimation during the steady state (>6000 s) as in Fig. 6.iii.a in com-
parison to other models. Additionally, the performance of CLBM with k
= 6 is significantly better in estimating SOC with less estimation errors
in comparison to CLBM with k = 3. For a better understanding of the
models accuracy and reliability in SOC estimation, Table 4 shows the
values of errors for each CBLM and compared against benchmark LSTM
model.

Notably, the RMSE values for K-Means CBLM show a general increase
with the number of clusters, starting from 0.65% at k= 2 and peaking at
0.75 % at k = 6, except for a slight increase at k = 3 to 1.05 %. This
suggests that the model’s predictive accuracy is generally stable across
different cluster sizes, with a notable exception at k = 3, where the error
increases. This superior performance is consistent, in which each CBLM
model across all k values demonstrated lower RMSE value compared to
the benchmark, confirming that clustering is capable of enhancing the
precision of SOC estimation. Similar to RMSE, the MAE increases from
0.51 % at k = 2 to 0.63 % at k = 6, with a peak at k = 3 (0.93 %). This
indicates a consistent estimation across all cluster sizes, with k = 3
showing the largest deviation from actual values. Additionally, CBLM
model with k= 4 also performed well in average with an MAE of 0.53 %,
outperforming benchmark’s MAE of 1.62 %. To further evaluate the
robustness of the approach, it is necessary to assess the model’s ability in
maintaining accuracy in extreme working conditions. The CBLM with k
= 4 has the lowest maximum error of 3.65 % which is substantially
lower than the benchmark’s maximum error of 6.59 %.

Although the CLBM with all k values outperformed the benchmark
performance in each evaluation metric; the models were only using only
one cluster model for the estimation as demonstrated in the cluster
assignment subplots in Fig. 6 and this is not sufficient for a compre-
hensive assessment of the proposed approach and necessities extended
tests.

4.2.2. FCM
Fig. 7 shows the estimated SOC against actual SOC over time (s) for

FCM-LSTM CBLM model with the corresponding cluster assignment
subplot for different values of k. It is evident that the choice of the
number of clusters (k) markedly influences the accuracy of SOC esti-
mation. Models with lower k values exhibit fewer spikes in SOC esti-
mation, indicating a smoother estimation curve, whereas CBLM with
higher k values tend to show increased fluctuation in SOC estimation.
Although CBLM with k = 6 performance showed increased number of
spikes in terms of SOC estimation; it was able to maintain better esti-
mation accuracy in steady state (>6000 s) compared to models with
lower k values. Table 3 presents error metrics for each CBLM, offering
insights into the models’ precision and consistency in SOC estimation,
with a comparative analysis against the Benchmark LSTM model.

The RMSE for FCM CBLM is lowest at k = 3 (0.64 %), significantly
outperforming the benchmark’s RMSE of 1.70 %, and highest at k = 6
(4.71 %), indicating a significant loss in estimation accuracy at higher
cluster numbers. This suggests that the model performs best with a low
to moderate number of clusters, with performance degrading signifi-
cantly as clusters increase. MAE results convey that k = 3 and k = 2
models performed with superior consistency, that is confirmed by the
lowest MAE figures of 0.47 % and 0.51 % respectively, compared to the
benchmark’s 1.62 %. In terms of the maximum error the lower k models
consistently exhibit a lower error margin compared to the benchmark,
reinforcing the robustness of lower k FCM CBLM in extreme scenarios.
On the other hand, the k= 6model’s maximum error at 79.06 % exposes
its considerable limitations in maintaining prediction accuracy under
extreme operational scenarios and this is a result of the rapid transition
between cluster models as shown in Fig. 7.iv, as models with lower k
were only using one cluster model for estimation. Overall, these findings
highlight that FCM clustering can improve SOC estimation, yet selecting

k=2 k=3

k=4 k=6

Fig. 5. Cluster distribution box plots for varying k values.
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(a) (a)

(b) (b)
ii: K-means CBLM with k=3 (a) Es�mated SOC vs Actual

and (b) Cluster assignments 

(a) (a)

(b) (b)
iii: K-means CBLM with k=4 (a) Es�mated SOC vs Actual

and (b) Cluster assignments  
iv: K-means CBLM with k=6 (a) Es�mated SOC vs Actual

and (b) Cluster assignments 

v: Benchmark model 

i: K-means CBLM with k=2 (a) Es�mated SOC vs Actual
and (b) Cluster assignments

Fig. 6. Actual vs. estimated SOC over time and corresponding cluster assignments for CLBM k = 2, k = 3, k = 4, and k = 6 using K-Means algorithm compared against
Benchmark model performance.
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(a) (a)

(b) (b)
i: FCM CBLM with k=2 (a) Es�mated SOC vs Actual and (b)

Cluster assignments 
ii: FCM CBLM with k=3 (a) Es�mated SOC vs Actual and

(b) Cluster assignments  

Fig. 7. Actual vs. estimated SOC over time and corresponding cluster assignments for CLBM k = 2, k = 3, k = 4, and k = 6 using FCM algorithm compared against
Benchmark model performance.
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an optimal number of clusters is crucial, as lower k values tend to yield
more dependable and accurate results (Table 5).

5. Discussion

Both K-Means and FCM CBLM findings indicate that the model’s
estimation accuracy varies with the number of clusters. However, FCM
shows a more pronounced deterioration in performance at the highest
number of clusters, suggesting that K-Means may provide more stable
predictions across a wider range of cluster sizes.

The K-Means CBLM showcases a remarkable improvement in accu-
racy and consistency over the benchmark. With a RMSE reduced by 61.8
% andMAE by 68.5% for the k= 2 configuration, it is evident that the K-
Means CBLM is significantly superior in estimating SOC. This high level
of precision, combined with a 45 % reduction in maximum error, un-
derscores the K-Means CBLM’s ability to provide reliable estimations
under varied conditions. The success of the K-Means model, particularly
with fewer clusters, highlights its efficacy in capturing the non-linear
behaviour of lithium-ion batteries, striking an optimal balance be-
tween simplicity and the complexity needed for precise SOC estimation.

Comparing K-Means and FCM models directly, the K-Means CBLM,

especially with k = 2, emerges as the more robust model for SOC esti-
mation. This is attributed to its greater accuracy, lower error rates, and
consistency across estimation. While the FCM model with k = 3 comes
close in terms of RMSE and MAE improvements over the benchmark, the
K-Means model’s overall stability and reliability make it the preferable
choice. The significant increase in maximum error observed in the FCM
k = 6 model further highlights the K-Means model’s superiority in
handling diverse and dynamic battery behaviours without compro-
mising on estimation accuracy. Additionally, the FCM CBLM perfor-
mance across all k values exhibited undesirable spikes as demonstrated
in Fig. 7; although the there was no transition in cluster models for the
lower values of k which puts forward a huge concern on its performance
under a variety of operational conditions where transitions are required.

Despite the strengths of the K-Means CBLM, the reliance on a single
cluster model for estimation highlights a potential limitation in its
adaptability to rapidly changing operational states. This underscores the
importance of further testing under a variety of conditions to fully assess
the dynamic SOC estimation capabilities of the K-Means CBLM SOC
estimation model, which is critical for real-time SOC estimation.

5.1. Extended test for K-Means CBLM

To comprehensively evaluate the robustness of the K-Means CBLM in
SOC estimation and its ability to dynamically transition between cluster
models, extended testing was conducted under a variety of operational
conditions. The performance of the models for different values of k is
demonstrated in Fig. 8.

For k = 2, the model demonstrates a high degree of accuracy, with
the predicted SOC closely following the actual SOC throughout the
duration, including the steady state and dynamic transitions. The cluster
assignment graph indicates that the model is relying on both cluster
models which shows successful implementation of the proposed dy-
namic approach. For k = 3, the model continues to perform well, but
introduces slightly more variability in the SOC estimation, as evidenced

Table 3
Interpretation of cluster distribution plots in terms of C-rate and battery temperature.

k Cluster K-Means FCM

k = 2 0 Moderate charging, higher temps. Moderate charging, higher temps.
1 Low variability discharging, near ambient temps. Low variability discharging, significantly higher temps.

k = 3 0 Low variability discharging, near ambient temps. Low variability discharging, moderate temps.
1 Moderate variability charging, warmer temps. High variability discharging, wide temp. range.
2 Low to moderate variability discharging, near ambient temps. Mixed charging/discharging, elevated temps.

k = 4 0 Low variability discharging, just above ambient temps. Charging, slightly above ambient temps.
1 Moderate variability charging, warmer temps. High variability discharging, broad temp. range.
2 Very low C-rate, much higher than ambient temps. Lower variability charging, high temps.
3 Moderate variability discharging, moderately above ambient temps. Low variability, likely standby, lower temps.

k = 6 0 Very low variability discharging, significantly higher temps. Minimal C-rate variability discharging, higher temps.
1 Low variability discharging, close to ambient temps. Balanced charge/discharge, moderate temps.
2 Moderate variability charging, warmer temps. Varied use discharging, broader temp. range.
3 High variability discharging, moderately above ambient temps. Active/high-rate charging, higher temps.
4 Moderate variability charging, higher temps. Intensive discharge rates, high temps.
5 Balanced charge/discharge, above ambient temps. Erratic/extreme conditions, high temps.

Table 4
Comparative performance evaluation, K-Means.

Metric Cluster based learning model Benchmark

k = 2 k = 3 k = 4 k = 6

RMSE (%) 0.65 1.05 0.72 0.75 1.70
MAE (%) 0.51 0.93 0.53 0.63 1.62
Max error (%) 3.62 4.64 3.56 3.91 6.59

Table 5
Comparative performance evaluation, FCM CBLM.

Metric Cluster based learning model Benchmark

k = 2 k = 3 k = 4 k = 6

RMSE (%) 0.66 0.64 0.70 4.71 1.70
MAE (%) 0.51 0.47 0.58 2.27 1.62
Max error (%) 3.98 5.60 4.52 79.06 6.59

Table 6
Comparative performance evaluation, K-MEANS CBLM–Extended test.

Metric Cluster based learning model Benchmark

k = 2 k = 3 k = 4 k = 6

RMSE (%) 1.24 1.39 1.31 1.16 1.64
MAE (%) 0.72 0.85 0.91 0.73 1.46
Max error (%) 7.79 9.82 16.18 5.42 6.60

Table 7
CBLM performance evaluation under the test: Removing one feature at a time.

Scenario MAE
(%)

RMSE
(%)

MaxError
(%)

Finding

All features
(original)

0.37 0.47 3.05 Lowest error

Remove current 0.58 0.71 5.57 Increased error
Remove voltage 20.93 27.21 80.51 Increased error
Remove battery
temperature

0.81 1.88 22.68 Increased error

Remove C-rate 0.36 0.46 4.16 Similar performance to
original scenario,
increased max error
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by the mild fluctuations. These fluctuations are mainly present at the
periods of transitions between cluster models, which introduces
complexity but also allows for a finer distinction between different
operating conditions. With k = 4, the SOC estimation remains closely
aligned with the actual SOC, even as the model navigates through more
frequent transitions between clusters. This suggests that while the model
can capture a greater range of operating conditions, it may also become
more vulnerable to fluctuations due to rapid changes in cluster assign-
ments. The k = 6 model displays a significant increase in accuracy
compared to k = 4, which was evident in the shorter spikes which could

be a result of the non-presence of rapid change to different cluster
models.

Evidently, there is an increase in the number of spikes and estimation
errors during the dynamic transitions between clusters. This may indi-
cate that while the model can finely distinguish between numerous
conditions, the frequent switching between clusters can lead to insta-
bility in SOC predictions. In summary, these results suggest that while
increasing the number of clusters can provide a more detailed repre-
sentation of battery behaviour, it also raises the complexity of the
model’s estimation task, which can lead to less stable predictions during
periods of rapid operational changes. This analysis underscores the need
to balance the granularity of clustering with the model’s ability to
maintain accurate and stable SOC predictions across a range of condi-
tions. Table 6 provides focused insights on the error margins of the
models compared to the benchmark LSTM model.

RMSE percentages suggest that the CBLM with k = 6 achieved the
lowest RMSE of 1.16 %, which is an improvement over the benchmark’s
RMSE of 1.64 %. MAE percentages further reinforce the superiority of
the k = 6 model with the lowest MAE of 0.73 %, compared to the
benchmark’s MAE of 1.46 %. This lower MAE indicates more consistent
SOC estimation from the k = 6 model. Interestingly, the k = 2, 3 and 4
models also outperform the benchmark with an MAE of 0.72 %, 0.85 %
and 0.91 % respectively, which is closely aligned with the k = 2 model’s
MAE, suggesting that despite the higher complexity and more frequent
cluster transitions, the k = 6 model can still maintain a reliable level of
precision in average. Notably, when examining the Maximum Error, all
CBLM configurations demonstrate a higher maximum error than the
benchmark, except for CBLM with k = 6.

From this analysis, it is evident that the k = 6 model has the best
overall performance across all metrics suggesting an optimal balance
between accuracy and consistency, with lower maximum error in
comparison to benchmark model. Reflecting on the cluster data distri-
bution interpretations presented in Table 6, the superior performance of
the k = 6 configuration can be justified by its detailed segmentation of
battery behaviour K-means algorithm with k = 6 was able to clearly
separates minor differences in charging and discharging behaviours,
along with a detailed awareness of temperature changes and operational
conditions. Such granularity allowed the model to accurately estimate
battery SOC across a range of working conditions, enhancing the esti-
mator’s precision robustness as indicated by the lowest errors presented
in Table 6.

Although all CBLM configurations performed significantly better in
terms of MAE in comparison to Benchmark; CBLM with k = 2, 3 and 4
exhibited increased maximum error which is majorly due to the tran-
sition between different cluster models. These insights should be taken
into consideration when choosing a CBLM for practical applications, as
the operational context might dictate the preference for either consistent
average performance or resilience against maximum prediction errors.

Additionally, the robustness of the centroid proximity-based cluster
assignment process presented in this research for dynamic SOC esti-
mation must be emphasised. The findings have shown that this process is
successful in assigning cluster models for estimation under a range of
operational conditions. However, certain limitations have become
apparent, particularly the undesired estimation spikes caused by rapid
transitions between cluster models. This issue points to the necessity for
enhancing the current method to better manage these transitions,
ensuring smoother SOC estimations and overall model reliability. A
potential advancement of the proposed method is including a threshold
of transition between one cluster model to another to reduce the chances
of potential rapid transitions, particularly instances of momentarily
switching to an alternative cluster model, only to revert to the previous
one in short time period as noticed in the cluster assignment sublots of k
= 3 and k = 4 in Fig. 8.

The benchmark’s model performance with the highest RMSE and
MAE and relatively higher maximum error highlights the critical role of
granularity provided by the CBLM approach in understanding complex

Table 8
CBLM performance evaluation under the test: Changing model
hyperparameters.

Case 1: Changing learning rate

Configuration Learning
rate

MAE
(%)

RMSE
(%)

MaxError
(%)

Finding

1 0.0001 0.55 0.71 6.30 Increased
error

2 (original) 0.001 0.37 0.47 3.05 Lowest error
3 0.01 0.92 1.38 14.22 Increased

error

Case 2: Changing optimizer

Configuration Optimizer MAE
(%)

RMSE
(%)

MaxError
(%)

Finding

1 SGD 2.56 4.18 12.51 Increased
error

2 NAdam 0.42 0.53 4.46 Increased
error

3 (original) Adam 0.37 0.47 3.05 Lowest error
4 RMSprop 1.42 1.57 4.91 Increased

error

Case 3: Training epochs

Configuration Epochs MAE
(%)

RMSE
(%)

MaxError
(%)

Finding

1 10 0.41 0.57 4.46 Increased
error

2 (original) 20 0.37 0.47 3.05 Lowest error
3 50 0.45 0.62 20.06 Increased

error

Case 4: Number of hidden neurons

Configuration Neurons MAE
(%)

RMSE
(%)

MaxError
(%)

Finding

1 20 0.64 0.80 3.71 Increased
error

2 (original) 50 0.37 0.47 3.05 Lowest error
3 100 0.60 0.77 5.64 Increased

error

Case 5: Output layer activation function

Configuration Activation
function

MAE
(%)

RMSE
(%)

MaxError
(%)

Finding

1 Sigmoid 0.44 0.55 3.75 Increased
error

2 (original) Linear 0.37 0.47 3.05 Original
performance

3 ReLU 0.32 0.42 2.39 Lowest error
4 PReLU 0.38 0.49 4.00 Increased

error
5 MISH 0.32 0.41 3.44 Reduced error
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battery behaviour. This level of granularity allows the SOC estimation
model to avoid the overgeneralisation adopted by the benchmark model;
allowing the machine learning algorithms to have nuanced training
process contributing to enhanced performance.

5.2. Robustness assessment: ablation test

In order to assess the robustness and performance of the proposed
novel CBLM framework, a comprehensive set of ablation tests were
conducted as this test has been proved to be an effective technique to

(a) (a)

(b) (b)
i: K-means CBLM with k=2 (a) Es�mated SOCvs Actual

and (b) Cluster assignments
ii: K-means CBLM with k=3 (a) Es�mated SOCvs Actual

and (b) Cluster assignments

(a) (a)

Fig. 8. Actual vs. estimated SOC over time and corresponding cluster assignments for CBLM k = 2, k = 3, k = 4, and k = 6 using K-MEANS algorithm compared
against Benchmark model performance across extended test conditions to cover different operational modes.
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develop high performance models using deep learning algorithms as in
[46–48]. The ablation tests are aimed to evaluate the impact of indi-
vidual input features on the estimation accuracy, and the hyper-
parameter tuning experiments explore the effect of various model
configurations on the overall performance. All experiments presented in
this section were fully carried out on the k = 2 CBLM configuration for
simplicity. To challenge the models, the test set included both a Constant
Current Constant Voltage (CCCV) charge and a drive cycle to present
diverse operational scenarios. The testing data used for this robustness
analysis was different from the data employed for the rest of the ex-
periments in the manuscript.

5.2.1. Remove one feature at a time
This experiment was carried out by systematically removing one

input feature at a time from the original feature set that included cur-
rent, voltage, battery temperature, and C-rate. The aim is to identify
importance and impact of individual features on the SOC estimation
using CBLM to highlight any redundant features that do not significantly
contribute to enhanced performance. The results of this ablation test are
presented in Table 7.

Results in Table 7 clearly highlight the critical importance of the
voltage feature for accurate SOC estimation using the CBLM. Removing
the voltage feature led to a significant increase in all error metrics (MAE,
RMSE, and MaxError), indicating that voltage is an essential feature in
this context. The battery temperature feature also played an important
role, as its removal resulted in an increase in all metrics, particularly
leading to higher errors. While the current feature’s removal had a slight
increase in the errors, removing the C-rate feature had a minimal impact
on MAE and RMSE, although it slightly increased the MaxError. This
suggests that the C-rate feature may be less crucial than the others for
SOC Estimation using the proposed approach.

5.2.2. Changing model hyperparameters
This study was carried out to optimize the performance of CBLM

which involved varying key hyperparameters of the model and assessing
their effects on the model’s performance. The hyperparameters inves-
tigated in this study include Learning Rate, Optimizer, Training Epochs,
Hidden Neurons and Output Layer Activation Function. The results of
this hyperparameter tuning study are presented in Table 8.

The hyperparameter tuning study revealed the optimal configura-
tions for the CBLM’s performance. The original learning rate of 0.001
and the Adam optimizer outperformed other settings, indicating their
suitability for this task. Regarding the number of training epochs, the
original setting of 20 epochs achieved the lowest errors, suggesting that
either fewer or more epochs could lead to underfitting or overfitting,
respectively. The original configuration with 50 hidden neurons ach-
ieved the best performance, indicating an appropriate level of
complexity. Fewer neurons limited the model’s capacity, while more
neurons resulted in increased errors that could be due to overfitting.
Finally, the ReLU activation function in the output layer achieved the
lowest errors, outperforming the original linear activation, resulting in
reduced errors overall with particular emphasis on the reduction in
maximum error which is highly important in the context of Lithium-ion
battery SOC estimation.

6. Conclusion

In conclusion, the primary contribution of this study is the devel-
opment and validation of a novel CBLM framework that integrates the
strengths of K-Means and Fuzzy C-Means clustering with the predictive
power of LSTM networks. This innovative approach enhances the pre-
cision and reliability of battery SOC estimations, adapting to the dy-
namic and complex operational conditions characteristic of lithium-ion
batteries. The integration of a dynamic SOC estimation process in the
proposed CBLM framework, facilitated by a centroid proximity. The
paper also introduces a centroid proximity cluster model selection

mechanism within the CBLM framework, which is instrumental in
assigning the corresponding cluster model for real-time SOC estimation
of batteries.

The results demonstrated that the K-Means CBLM, particularly with
k = 2 and k= 6 clusters, outperformed the benchmark standalone LSTM
model in terms of RMSE, MAE, and maximum error, showcasing the
effectiveness of the proposed approach. The findings also highlighted
the importance of selecting an optimal number of clusters, as the per-
formance can vary depending on the granularity of the operational
condition representation. The study conducted comprehensive ablation
tests to assess the robustness of the proposed CBLM framework and
evaluated the impact of individual input features and the effect of
various model hyperparameters on the estimation accuracy.

The study has made significant contribution to SOC estimation, but it
acknowledges certain limitations. Rapid transitions between cluster
models, particularly with FCM CBLM, could lead to undesirable esti-
mation spikes and indicate a need for refinement in the cluster assign-
ment mechanism. To address these limitations and enhance the SOC
estimation process further, future research should focus on refining the
CBLM SOC estimation by improving the centroid proximity cluster
assignment mechanism for smoother transitions between cluster models,
exploring dynamic switching mechanisms to enhance model accuracy
during different operational. Additionally, we plan to further assess the
generalisability of the proposed CBLM framework by applying it to
datasets involving different battery chemistries. This will allow us to
evaluate the robustness and adaptability of the approach across a wider
range of battery technologies. Building upon the optimal cluster iden-
tification investigation conducted in this study, future research could
focus on developing a more automated mechanism for selecting the
optimal number of clusters.
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