A novel vision-based multi-functional sensor for normality and position measurements in precise robotic manufacturing

Journal article


Halwani, M., Ayyad, A., AbuAssi, L., Abdulrahman, Y., Almaskari, F., Hassanin, H., Abusafieh, A. and Zweiri, Y. 2024. A novel vision-based multi-functional sensor for normality and position measurements in precise robotic manufacturing. Precision Engineering. 88, pp. 367-381. https://doi.org/10.1016/j.precisioneng.2024.02.015
AuthorsHalwani, M., Ayyad, A., AbuAssi, L., Abdulrahman, Y., Almaskari, F., Hassanin, H., Abusafieh, A. and Zweiri, Y.
Abstract

Cobots play an essential role in the fourth industrial revolution and the automation of complex manufacturing processes. However, cobots still face challenges in achieving high precision, which obstructs their usage in precise applications such as the aerospace industry. Nonetheless, advances in perception systems unlock new cobot manufacturing capabilities. This paper presents a novel multi-functional sensor that combines visual and tactile feedback using a single optical sensor, featuring a moving gate mechanism. This work also marks the first integration of Vision-Based Tactile Sensing (VBTS) into a robotic machining end-effector. The sensor provides vision-based tactile perception capabilities for precise normality control and exteroceptive perception for robot localization and positioning. Its performance is experimentally demonstrated in a precise robotic deburring application, where the sensor achieves the high-precision requirements of the aerospace industry with a mean normality error of 0.13° and a mean positioning error of 0.2 mm. These results open a new paradigm for using vision-based sensing for precise robotic manufacturing, which surpasses conventional approaches in terms of precision, weight, size, and cost-effectiveness.

KeywordsMulti-functional sensor; Vision-based tactile sensing; Precise manufacturing; Robot deburring
Year2024
JournalPrecision Engineering
Journal citation88, pp. 367-381
PublisherElsevier
ISSN0141-6359
Digital Object Identifier (DOI)https://doi.org/10.1016/j.precisioneng.2024.02.015
Official URLhttps://www.sciencedirect.com/science/article/pii/S0141635924000515#aep-article-footnote-id1
Publication dates
Print26 Feb 2024
Publication process dates
Accepted24 Mar 2024
Deposited20 Mar 2024
Accepted author manuscript
File Access Level
Restricted
Publisher's version
License
File Access Level
Open
Output statusPublished
References

[1]
Welber I.
Factory of the future
IEEE Control Syst Mag, 7 (2) (1987), pp. 20-22, 10.1109/MCS.1987.1105295
[2]
Huang X., Halwani M., Muthusamy R., Ayyad A., Swart D., Seneviratne L., et al.
Real-time grasping strategies using event camera
J Intell Manuf, 33 (2) (2022), pp. 593-615, 10.1007/s10845-021-01887-9
[3]
Perez-Vidal C., Gracia L., de Paco J.M., Wirkus M., Azorin J.M., de Gea J.
Automation of product packaging for industrial applications
Int J Comput Integr Manuf, 31 (2) (2018), pp. 129-137, 10.1080/0951192X.2017.1369165
[4]
Oztemel E., Gursev S.
Literature review of industry 4.0 and related technologies
J Intell Manuf, 31 (1) (2020), pp. 127-182, 10.1007/s10845-018-1433-8
[5]
Verl A., Valente A., Melkote S., Brecher C., Ozturk E., Tunc L.T.
Robots in machining
CIRP Ann, 68 (2) (2019), pp. 799-822, 10.1016/j.cirp.2019.05.009
URL https://www.sciencedirect.com/science/article/pii/S0007850619301660
[6]
Eguti C.C.A., Trabasso L.G.
Design of a robotic orbital driller for assembling aircraft structures
Mechatronics, 24 (5) (2014), pp. 533-545, 10.1016/j.mechatronics.2014.06.007
URL https://www.sciencedirect.com/science/article/pii/S0957415814000968
[7]
Karim A., Verl A.
Challenges and obstacles in robot-machining
IEEE ISR 2013 (2013), 10.1109/ISR.2013.6695731
[8]
Chen Y., Dong F.
Robot machining: Recent development and future research issues
Int J Adv Manuf Technol, 66 (9) (2013), pp. 1489-1497, 10.1007/s00170-012-4433-4
[9]
Chen D., Yuan P., Wang T., Cai Y., Tang H.
A normal sensor calibration method based on an extended Kalman filter for robotic drilling
Sensors (Switzerland), 18 (10) (2018), 10.3390/s18103485
[10]
Yu L., Bi Q., Ji Y., Fan Y., Huang N., Wang Y.
Vision based in-process inspection for countersink in automated drilling and riveting
Precis Eng, 58 (2019), pp. 35-46, 10.1016/j.precisioneng.2019.05.002
URL https://www.sciencedirect.com/science/article/pii/S0141635919300613
[11]
Yuan P., Wang Q., Wang T., Wang C., Song B.
Surface normal measurement in the end effector of a drilling robot for aviation
Proceedings - IEEE international conference on robotics and automation, IEEE (2014), pp. 4481-4486, 10.1109/ICRA.2014.6907513
[12]
Frommknecht A., Kuehnle J., Effenberger I., Pidan S.
Multi-sensor measurement system for robotic drilling
Robot Comput-Integr Manuf, 47 (2017), 10.1016/j.rcim.2017.01.002
[13]
Santos K.R.D.S., De Carvalho G.M., Tricarico R.T., Ferreira L.F.L., Villani E., Suterio R.
Evaluation of perpendicularity methods for a robotic end effector from aircraft industry
2018 13th IEEE international conference on industry applications, INDUSCON 2018 - Proceedings (2019), pp. 1373-1380, 10.1109/INDUSCON.2018.8627218
[14]
Yu L., Zhang Y., Bi Q., Wang Y.
Research on surface normal measurement and adjustment in aircraft assembly
Precis Eng, 50 (2017), pp. 482-493, 10.1016/j.precisioneng.2017.07.004
[15]
Zhang Y., Bi Q., Yu L., Wang Y.
Online adaptive measurement and adjustment for flexible part during high precision drilling process
Int J Adv Manuf Technol, 89 (9) (2017), pp. 3579-3599, 10.1007/s00170-016-9274-0
[16]
Lin M., Yuan P., Tan H., Liu Y., Zhu Q., Li Y.
Improvements of robot positioning accuracy and drilling perpendicularity for autonomous drilling robot system
2015 IEEE international conference on robotics and biomimetics, IEEE-ROBIO 2015, IEEE (2015), pp. 1483-1488, 10.1109/ROBIO.2015.7418980
[17]
Yuan P., Lai T., Li Y., Han W., Lin M., Zhu Q., et al.
The attitude adjustment algorithm in drilling end-effector for aviation
Adv Mech Eng, 8 (1) (2016), pp. 1-9, 10.1177/1687814016629348
[18]
Shaomin L., Deyuan Z., yanqiang L., chunjian L., Hui T., guang M.
A self-adaption normal direction and active variable stiffness low-frequency vibration-assisted system for curved surface drilling
Precis Eng, 64 (2020), pp. 307-318, 10.1016/j.precisioneng.2020.04.017
URL https://www.sciencedirect.com/science/article/pii/S0141635920302233
[19]
Xiao R., Xu Y., Hou Z., Chen C., Chen S.
An automatic calibration algorithm for laser vision sensor in robotic autonomous welding system
J Intell Manuf, 33 (5) (2022), pp. 1419-1432, 10.1007/s10845-020-01726-3
[20]
Ayyad A., Halwani M., Swart D., Muthusamy R., Almaskari F., Zweiri Y.
Neuromorphic vision based control for the precise positioning of robotic drilling systems
Robot Comput-Integr Manuf, 79 (2023), Article 102419, 10.1016/j.rcim.2022.102419
URL https://www.sciencedirect.com/science/article/pii/S0736584522001041
[21]
Furtado L.F.F., Coracini G.K., Villani E., Trabasso L.G.
Comparative Study Between Two Methods for Perpendicularity Corrections in Robotic Manipulators
21st international congress of mechanical engineering - COBEM, vol. 5 (2011), pp. 1194-1200
Google Scholar
[22]
Tian W., Zhou W., Zhau W., Liao W., Zeng Y.
Auto-normalization algorithm for robotic precision drilling system in aircraft component assembly
Chin J Aeronaut, 26 (2) (2013), pp. 495-500, 10.1016/j.cja.2013.02.029
[23]
Gao Y., Wu D., Nan C., Chen K.
Normal direction measurement in robotic drilling and precision calculation
Int J Adv Manuf Technol, 76 (5–8) (2015), pp. 1311-1318, 10.1007/s00170-014-6320-7
[24]
Gao Y., Wu D., Dong Y., Ma X., Chen K.
The method of aiming towards the normal direction for robotic drilling
Int J Precis Eng Manuf, 18 (6) (2017), pp. 787-794, 10.1007/s12541-017-0094-4
[25]
Yu L., Zhang Y., Bi Q., Wang Y.
Research on surface normal measurement and adjustment in aircraft assembly
Precis Eng, 50 (2017), pp. 482-493, 10.1016/j.precisioneng.2017.07.004
URL https://www.sciencedirect.com/science/article/pii/S0141635917300491
[26]
Song T., Xi F., Guo S., Ming Z., Lin Y.
A comparison study of algorithms for surface normal determination based on point cloud data
Precis Eng, 39 (2015), pp. 47-55, 10.1016/j.precisioneng.2014.07.005
URL https://www.sciencedirect.com/science/article/pii/S014163591400124X
[27]
Rao G., Yang X., Yu H., Chen K., Xu J.
Fringe-projection-based normal direction measurement and adjustment for robotic drilling
IEEE Trans Ind Electron, 67 (11) (2020), pp. 9560-9570, 10.1109/TIE.2019.2952791
[28]
Olsson T., Haage M., Kihlman H., Johansson R., Nilsson K., Robertsson A., et al.
Cost-efficient drilling using industrial robots with high-bandwidth force feedback
Robot Comput-Integr Manuf, 26 (1) (2010), pp. 24-38, 10.1016/j.rcim.2009.01.002
[29]
Shah U.H., Muthusamy R., Gan D., Zweiri Y., Seneviratne L.
On the design and development of vision-based tactile sensors
J Intell Robot Syst, 102 (4) (2021), p. 82, 10.1007/s10846-021-01431-0
[30]
Lambeta M., Chou P.W., Tian S., Yang B., Maloon B., Most V.R., et al.
DIGIT: A novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation
IEEE Robot Autom Lett, 5 (3) (2020), pp. 3838-3845, 10.1109/LRA.2020.2977257
arXiv:2005.14679
[31]
hyun Choi S., Tahara K.
Dexterous object manipulation by a multi-fingered robotic hand with visual-tactile fingertip sensors
ROBOMECH J, 7 (1) (2020), 10.1186/s40648-020-00162-5
[32]
Kumagai K., Shimonomura K.
Event-based tactile image sensor for detecting spatio-temporal fast phenomena in contacts
2019 IEEE world haptics conference, Institute of Electrical and Electronics Engineers Inc. (2019), pp. 343-348, 10.1109/WHC.2019.8816132
[33]
Product manual syntouch biotac® SP tactile sensor. Tech. rep., 2020.
Google Scholar
[34]
Ito Y., Kim Y., Obinata G.
Robust slippage degree estimation based on reference update of vision-based tactile sensor
IEEE Sens J, 11 (9) (2011), pp. 2037-2047, 10.1109/JSEN.2010.2104316
[35]
Rigi A., Baghaei Naeini F., Makris D., Zweiri Y.
A novel event-based incipient slip detection using dynamic active-pixel vision sensor (DAVIS)
Sensors, 18 (2) (2018), 10.3390/s18020333
URL https://www.mdpi.com/1424-8220/18/2/333
[36]
Sun H., Kuchenbecker K.J., Martius G.
A soft thumb-sized vision-based sensor with accurate all-round force perception
Nat Mach Intell, 4 (2) (2022), pp. 135-145, 10.1038/s42256-021-00439-3
[37]
Kakani V., Cui X., Ma M., Kim H.
Vision-based tactile sensor mechanism for the estimation of contact position and force distribution using deep learning
Sensors, 21 (5) (2021), 10.3390/s21051920
URL https://www.mdpi.com/1424-8220/21/5/1920
[38]
Lepora N.F., Lloyd J.
Optimal deep learning for robot touch: Training accurate pose models of 3D surfaces and edges
IEEE Robot Autom Mag, 27 (2) (2020), pp. 66-77, 10.1109/MRA.2020.2979658
[39]
Sajwani H., Ayyad A., Alkendi Y., Halwani M., Abdulrahman Y., Abusafieh A., et al.
TactiGraph: An asynchronous graph neural network for contact angle prediction using neuromorphic vision-based tactile sensing
Sensors, 23 (14) (2023), 10.3390/s23146451
URL https://www.mdpi.com/1424-8220/23/14/6451
[40]
Ward-Cherrier B., Pestell N., Lepora N.F.
NeuroTac: A neuromorphic optical tactile sensor applied to texture recognition
Proceedings - IEEE international conference on robotics and automation (2020), pp. 2654-2660, 10.1109/ICRA40945.2020.9197046
arXiv:2003.00467
[41]
Kakani V., Cui X., Ma M., Kim H.
Vision-based tactile sensor mechanism for the estimation of contact position and force distribution using deep learning
Sensors, 21 (5) (2021), 10.3390/s21051920
URL https://www.mdpi.com/1424-8220/21/5/1920
[42]
Psomopoulou E., Pestell N., Papadopoulos F., Lloyd J., Doulgeri Z., Lepora N.F.
A robust controller for stable 3D pinching using tactile sensing
IEEE Robot Autom Lett, 6 (4) (2021), pp. 8150-8157, 10.1109/LRA.2021.3104057
[43]
Muthusamy R., Huang X., Zweiri Y., Seneviratne L., Gan D., Muthusamy R.
Neuromorphic event-based slip detection and suppression in robotic grasping and manipulation
IEEE Access, 8 (2020), pp. 153364-153384, 10.1109/ACCESS.2020.3017738
arXiv:2004.07386
[44]
Gupta A.K., Aitchison L., Lepora N.F.
Tactile image-to-image disentanglement of contact geometry from motion-induced shear
Proceedings of the 5th conference on robot learning, Proceedings of machine learning research, vol. 164, PMLR (2022), pp. 14-23
URL https://proceedings.mlr.press/v164/gupta22a.html
[45]
Mei B., Zhu W.
Accurate positioning of a drilling and riveting cell for aircraft assembly
Robot Comput-Integr Manuf, 69 (2021), Article 102112, 10.1016/j.rcim.2020.102112
URL https://www.sciencedirect.com/science/article/pii/S0736584520303227
[46]
Jiang T., Cui H., Cheng X., Tian W.
A measurement method for robot peg-in-hole prealignment based on combined two-level visual sensors
IEEE Trans Instrum Meas, 70 (2021), pp. 1-12, 10.1109/TIM.2020.3026802
[47]
AYYAD A. Robotic manipulator with visual guidance and tactile sensing (US 2023/0073681 A1. United States Patent and Trademark Office, March 2023).
[48]
Macdonald F.L.A., Lepora N.F., Conradt J., Ward-Cherrier B.
Neuromorphic tactile edge orientation classification in an unsupervised spiking neural network
Sensors, 22 (18) (2022), 10.3390/s22186998
URL https://www.mdpi.com/1424-8220/22/18/6998
[49]
Dornaika F., Horaud R.
Simultaneous robot-world and hand-eye calibration
IEEE Trans Robot Autom, 14 (4) (1998), pp. 617-622, 10.1109/70.704233
[50]
Ward-Cherrier B., Cramphorn L., Lepora N.F.
Exploiting sensor symmetry for generalized tactile perception in biomimetic touch
IEEE Robot Autom Lett, 2 (2) (2017), pp. 1218-1225, 10.1109/LRA.2017.2665692
[51]
Sferrazza C., D’Andrea R.
Design, motivation and evaluation of a full-resolution optical tactile sensor
Sensors (Switzerland), 19 (4) (2019), 10.3390/s19040928
[52]
Ward-Cherrier B., Cramphorn L., Lepora N.F.
Tactile manipulation with a TacThumb integrated on the open-hand M2 gripper
IEEE Robot Autom Lett, 1 (1) (2016), pp. 169-175, 10.1109/LRA.2016.2514420
[53]
Liu C., Wang K., Wang Y., Yuan X.
Learning deep multimanifold structure feature representation for quality prediction with an industrial application
IEEE Trans Ind Inf, 18 (9) (2022), pp. 5849-5858, 10.1109/TII.2021.3130411
[54]
Jiang Y., Yin S., Dong J., Kaynak O.
A review on soft sensors for monitoring, control, and optimization of industrial processes
IEEE Sens J, 21 (11) (2021), pp. 12868-12881, 10.1109/JSEN.2020.3033153
[55]
Sun Q., Ge Z.
Gated stacked target-related autoencoder: A novel deep feature extraction and layerwise ensemble method for industrial soft sensor application
IEEE Trans Cybern, 52 (5) (2022), pp. 3457-3468, 10.1109/TCYB.2020.3010331
[56]
Glorot X., Bengio Y.
Understanding the difficulty of training deep feedforward neural networks
Teh Y.W., Titterington M. (Eds.), Proceedings of the thirteenth international conference on artificial intelligence and statistics, Proceedings of machine learning research, vol. 9, PMLR, Chia Laguna Resort, Sardinia, Italy (2010), pp. 249-256
URL https://proceedings.mlr.press/v9/glorot10a.html
[57]
Zhu W., Mei B., Yan G., Ke Y.
Measurement error analysis and accuracy enhancement of 2D vision system for robotic drilling
Robot Comput-Integr Manuf, 30 (2) (2014), pp. 160-171, 10.1016/j.rcim.2013.09.014
URL https://www.sciencedirect.com/science/article/pii/S0736584513000732
[58]
Romero-Ramirez F.J., Muñoz-Salinas R., Medina-Carnicer R.
Speeded up detection of squared fiducial markers
Image Vis Comput, 76 (2018), pp. 38-47, 10.1016/j.imavis.2018.05.004
URL https://www.sciencedirect.com/science/article/pii/S0262885618300799
[59]
Akinlar C., Tonal C.
EDCircles: Real-time circle detection by edge drawing (ED)
2012 IEEE international conference on acoustics, speech and signal processing (2012), pp. 1309-1312, 10.1109/ICASSP.2012.6288130
[60]
Kuffner J., LaValle S.
RRT-connect: An efficient approach to single-query path planning
Proceedings 2000 iCRA. millennium conference. IEEE international conference on robotics and automation. Symposia proceedings (cat. no.00CH37065) (2000), pp. 995-1001, 10.1109/ROBOT.2000.844730
[61]
Sucan I.A., Moll M., Kavraki L.E.
The open motion planning library
IEEE Robot Autom Mag, 19 (4) (2012), pp. 72-82, 10.1109/MRA.2012.2205651
[62]
Mei B., Zhu W., Yan G., Ke Y.
A new elliptic contour extraction method for reference hole detection in robotic drilling
Pattern Anal Appl, 18 (3) (2015), pp. 695-712, 10.1007/s10044-014-0394-6

Permalink -

https://repository.canterbury.ac.uk/item/9765w/a-novel-vision-based-multi-functional-sensor-for-normality-and-position-measurements-in-precise-robotic-manufacturing

Download files


Publisher's version
1-s2.0-S0141635924000515-main.pdf
License: CC BY-NC-ND 4.0
File access level: Open

  • 59
    total views
  • 35
    total downloads
  • 4
    views this month
  • 2
    downloads this month

Export as

Related outputs

A review of corncob-based building materials as a sustainable solution for the building and construction industry
Okeke, F., Ahmed, A., Imam, A. and Hassanin, H. 2024. A review of corncob-based building materials as a sustainable solution for the building and construction industry. Hybrid Advances. 6 (100269), pp. 1-16. https://doi.org/10.1016/j.hybadv.2024.100269
A novel enhanced SOC estimation method for lithium-ion battery cells using cluster-based LSTM models and centroid proximity selection
Al-Alawi, M., Jaddoa, A., Cugley, J. and Hassanin, H. 2024. A novel enhanced SOC estimation method for lithium-ion battery cells using cluster-based LSTM models and centroid proximity selection. Journal of Energy Storage. 97 (B), p. 112866. https://doi.org/10.1016/j.est.2024.112866
Assessment of compressive strength performance of corn cob ash blended concrete: a review
Okeke, F., Ahmed, A., Imam, A. and Hassanin, H. 2024. Assessment of compressive strength performance of corn cob ash blended concrete: a review. https://doi.org/10.18552/2024/SCMT/606
Tailoring 3D star-shaped auxetic structures for enhanced mechanical performance
Hassanin, H., Wang, Y., A. Alsaleh, N., Djuansjah, J., El-Sayed, K. and Essa, K. 2024. Tailoring 3D star-shaped auxetic structures for enhanced mechanical performance. Aerospace. 11 (6), p. 428. https://doi.org/10.3390/aerospace11060428
Virtual prototyping of vision-based tactile sensors design for robotic-assisted precision machining
Zaid, I., Sajwani, H., Halwani, M., Hassanin, H., Ayyad, A., AbuAssi, A., Almaskari, F., Abdul Samad, Y, Abusafieh, A. and Zweiri, Y. 2024. Virtual prototyping of vision-based tactile sensors design for robotic-assisted precision machining. Sensors and Actuators A: Physical. 374 (115469). https://doi.org/10.1016/j.sna.2024.115469
Designing lightweight 3D-printable bioinspired structures for enhanced compression and energy absorption properties
Harish, A., A. Alsaleh, N., Ahmadein, M., Elfar, A., Djuansjah, J., Hassanin, H., El-Sayed, M. and Essa, K. 2024. Designing lightweight 3D-printable bioinspired structures for enhanced compression and energy absorption properties. Polymers. 16 (6), p. 729. https://doi.org/10.3390/polym16060729
Optimisation of a novel hot air contactless single incremental point forming of polymers
Almadani, M., Guner, A., Hassanin, H. and Essa, K. 2024. Optimisation of a novel hot air contactless single incremental point forming of polymers. Journal of Manufacturing Processes. 117, pp. 302-314. https://doi.org/10.1016/j.jmapro.2024.02.042
Advancing safety and efficiency in critical infrastructure with a novel SOC estimation for battery storage systems: A focus on second life batteries
Al-Alawi, M., Cugley, J., Jaddoa, A. and Hassanin, H. 2024. Advancing safety and efficiency in critical infrastructure with a novel SOC estimation for battery storage systems: A focus on second life batteries.
Review on engineering of bone scaffolds using conventional and additive manufacturing technologies
Mohammed, A., Jiménez, Amaia, Bidare, Prveen, Elshaer, Amr, Memic, Adnan, Hassanin, Hany and Essa, Khamis 2024. Review on engineering of bone scaffolds using conventional and additive manufacturing technologies. 3D Printing and Additive Manufacturing. 11 (4), pp. 1418-1440. https://doi.org/10.1089/3dp.2022.0360
Contactless single point incremental forming: Experimental and numerical simulation
Almadani, M., Guner, A., Hassanin, H., De Lisi, Michele. and Essa, K. 2023. Contactless single point incremental forming: Experimental and numerical simulation. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-023-12401-1
Hot-air contactless single-point incremental forming
Almadani, M., Guner, A., Hassanin, H. and Essa, K. 2023. Hot-air contactless single-point incremental forming. Journal of Manufacturing and Materials Processing. 7 (5), p. 179. https://doi.org/10.3390/jmmp7050179
Optimising surface roughness and density in titanium fabrication via laser powder bed fusion
Hassanin, H., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ataya, S., Ahmed, M. and Essa, K. 2023. Optimising surface roughness and density in titanium fabrication via laser powder bed fusion. Micromachines. 14 (8), p. 1642. https://doi.org/10.3390/mi14081642
Hybrid finite element–smoothed particle hydrodynamics modelling for optimizing cutting parameters in CFRP composites
Abena, A., Ataya, S., Hassanin, H., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ahmed, M. and Essa, K. 2023. Hybrid finite element–smoothed particle hydrodynamics modelling for optimizing cutting parameters in CFRP composites. Polymers. 15 (13), p. 2789. https://doi.org/10.3390/polym15132789
Embracing sustainable farming: Unleashing the circular economy potential of second-life EV batteries in agricultural applications
Al-Alawi, M., Cugley, J. and Hassanin, H. 2023. Embracing sustainable farming: Unleashing the circular economy potential of second-life EV batteries in agricultural applications.
Entrained defects and mechanical properties of aluminium castings
El-Sayed, M., Essa, K. and Hassanin, H. 2023. Entrained defects and mechanical properties of aluminium castings.
Preparation of polylactic acid/calcium peroxide compo-site filaments for fused deposition modelling
Mohammed, A., Kovacev , N., Elshaer, A., Melaibari, A., Iqbal, J., Hassanin, H., Essa, K. and Memić, A. 2023. Preparation of polylactic acid/calcium peroxide compo-site filaments for fused deposition modelling. Polymers. 15 (9), p. 2229. https://doi.org/10.3390/polym15092229
Non-destructive disassembly of interference fit under wear conditions for sustainable remanufacturing
Yeung, H., Ataya, S., Hassanin, H., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ahmed, M. and Essa, K. 2023. Non-destructive disassembly of interference fit under wear conditions for sustainable remanufacturing. Machines. 11 (5), p. 538. https://doi.org/10.3390/machines11050538
Fabrication and characterization of oxygen-generating polylactic acid/calcium peroxide composite filaments for bone scaffolds
Mohammed, A., Saeed, A., Elshaer, A., Melaibari, A., Memić, A., Hassanin, H. and Essa, K. 2023. Fabrication and characterization of oxygen-generating polylactic acid/calcium peroxide composite filaments for bone scaffolds. Pharmaceuticals. 16 (4), p. 627. https://doi.org/10.3390/ph16040627
Using second-life batteries and solar power to help farms become energy efficient.
Al-Alawi, M., Cugley, J. and Hassanin, H. 2023. Using second-life batteries and solar power to help farms become energy efficient. Canterbury Christ Church University.
Chip formation and orthogonal cutting optimisation of unidirectional carbon fibre composites
Hassanin, H., Abena, A., Soo, L., Ataya, S., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ahmed, M. and Essa, K. 2023. Chip formation and orthogonal cutting optimisation of unidirectional carbon fibre composites. Polymers. 15 (8), p. 1897. https://doi.org/10.3390/polym15081897
Fabrication and Optimisation of Ti-6Al-4V Lattice-Structured Total Shoulder Implants Using Laser Additive Manufacturing
Bittredge, Oliver, Hassanin, H., El-Sayed, M., Eldessouky, Hossam Mohamed, A. Alsaleh, N., Alrasheedi, Nashmi H., Essa, K. and Ahmadein, M. 2022. Fabrication and Optimisation of Ti-6Al-4V Lattice-Structured Total Shoulder Implants Using Laser Additive Manufacturing. Materials (Basel, Switzerland). 15 (9), p. e3095. https://doi.org/10.3390/ma15093095
Elastomer-based visuotactile sensor for normality of robotic manufacturing systems
Hassanin, H., Zaid, I., Halwani, M., Ayyad, A., Imam, A., Almaskari, F. and Zweiri, Y. 2022. Elastomer-based visuotactile sensor for normality of robotic manufacturing systems. Polymers. 14 (23), p. 5097. https://doi.org/10.3390/polym14235097
Techno-economic feasibility of retired electric-vehicle batteries repurpose/reuse in second-life applications: A systematic review
Hassanin, H., Al-Alawi, M. and Cugley, J. 2022. Techno-economic feasibility of retired electric-vehicle batteries repurpose/reuse in second-life applications: A systematic review. Energy and Climate Change. 3 (100086). https://doi.org/10.1016/j.egycc.2022.100086
Planning, operation, and design of market-based virtual power plant considering uncertainty
Hassanin, H., Ullah, Z., Arshad, Cugley, J. and Al-Alawi, M. 2022. Planning, operation, and design of market-based virtual power plant considering uncertainty. Energies. 19 (15), p. 7290. https://doi.org/10.3390/en15197290
The epistemic insight digest: Issue : Autumn 2022
Gordon, A., Shalet, D., Simpson, S., Hassanin, H., Lawson, F., Lawson, M., Litchfield, A., Thomas, C., Canetta, E., Manley, K. and Choong, C. Shalet, D. (ed.) 2022. The epistemic insight digest: Issue : Autumn 2022. Canterbury Canterbury Christ Church University.
Modeling, optimization, and analysis of a virtual power plant demand response mechanism for the internal electricity market considering the uncertainty of renewable energy sources
Ullah, Z., Arshad and Hassanin, H. 2022. Modeling, optimization, and analysis of a virtual power plant demand response mechanism for the internal electricity market considering the uncertainty of renewable energy sources. Energies. 15 (14), p. 5296. https://doi.org/doi.org/10.3390/en15145296
Interdisciplinary engineering education - essential for the 21st century
Gordon, A., Simpson, S. and Hassanin, H. 2022. Interdisciplinary engineering education - essential for the 21st century.
Multipoint forming using hole-type rubber punch
Hassanin, H., Tolipov, A., El-Sayed, M., Eldessouky, H., A. Alsaleh, N., Alfozan, A., Essa, K. and Ahmadein, M. 2022. Multipoint forming using hole-type rubber punch. Metals. 12 (3), p. 491. https://doi.org/10.3390/met12030491
Influence of bifilm defects generated during mould filling on the tensile properties of Al−Si−Mg cast alloys
El-Sayed, M., Essa, K. and Hassanin, H. 2022. Influence of bifilm defects generated during mould filling on the tensile properties of Al−Si−Mg cast alloys. Metals. 12 (1), p. e160. https://doi.org/10.3390/met12010160
Multistage Tool Path Optimisation of Single-Point Incremental Forming Process
Yan, Zhou, Hassanin, H., El-Sayed, M., Eldessouky, Hossam Mohamed, Djuansjah, Joy Rizki Pangestu, A. Alsaleh, N., Essa, K. and Ahmadein, M. 2021. Multistage Tool Path Optimisation of Single-Point Incremental Forming Process. Materials (Basel, Switzerland). 14 (22), p. e6794. https://doi.org/10.3390/ma14226794
Effect of runner thickness and hydrogen content on the mechanical properties of A356 alloy castings
El-Sayed, M., Essa, K. and Hassanin, H. 2021. Effect of runner thickness and hydrogen content on the mechanical properties of A356 alloy castings . International Journal of Metalcasting. https://doi.org/10.1007/s40962-021-00753-x
Parts design and process optimization
Hassanin, Hany, Bidare, Prveen, Zweiri, Yahya and Essa, Khamis 2021. Parts design and process optimization. in: Salunkhe, S., Hussein, H. and Davim, J. (ed.) Applications of Artificial Intelligence in Additive Manufacturing USA IGI Global. pp. 25-49
Micro-additive manufacturing technologies of three-dimensional MEMS
Hassanin, H., Sheikholeslami, G., Pooya, S. and Ishaq, R. 2021. Micro-additive manufacturing technologies of three-dimensional MEMS . Advanced Engineering Materials. https://doi.org/10.1002/adem.202100422
Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications
Fan , W., Chen, Y., Li, J., Sun, Y., Feng, F., Hassanin, H. and Sareh, P. 2021. Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications. Structures. 33, pp. 3954-3963. https://doi.org/10.1016/j.istruc.2021.06.110
Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: A review
Bidare, P., Jiménez, A., Hassanin, H. and Essa, K. 2021. Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: A review. Advances in Manufacturing. https://doi.org/10.1007/s40436-021-00365-y
Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approaches
Hassanin, H., Zweiri, Y., Finet, L., Essa, K., Qiu, C. and Attallah, M. 2021. Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approaches. Materials. 14 (8), p. 2056. https://doi.org/10.3390/ma14082056
3DP printing of oral solid formulations: a systematic review
Brambilla, C., Okafor-Muo, O., Hassanin, H. and ElShaer, A. 2021. 3DP printing of oral solid formulations: a systematic review. Pharmaceutics. 13 (3), p. 358. https://doi.org/10.3390/pharmaceutics13030358
Powder-based laser hybrid additive manufacturing of metals: A review
Hassanin, H. 2021. Powder-based laser hybrid additive manufacturing of metals: A review. The International Journal of Advanced Manufacturing Technology.
Micro-fabrication of ceramics: additive manufacturing and conventional technologies
Hassanin, H., Essa, K., Elshaer, A., Imbaby, M. and El-Sayed, T. E. 2021. Micro-fabrication of ceramics: additive manufacturing and conventional technologies. Journal of Advanced Ceramics. 10, pp. 1-27. https://doi.org/10.1007/s40145-020-0422-5
4D Printing of origami structures for minimally invasive surgeries using functional scaffold
Langford, T, Mohammed, A., Essa, K., Elshaer, A. and Hassanin, H. 2020. 4D Printing of origami structures for minimally invasive surgeries using functional scaffold. Applied Sciences. 11 (1), p. 332. https://doi.org/10.3390/app11010332
Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile
Hassanin, H., Mohammed, M., Abdel-Wahab, A. and Essa, K 2020. Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile. Materials.
3D printing of solid oral dosage forms: numerous challenges with unique opportunities
Hassanin, H. 2020. 3D printing of solid oral dosage forms: numerous challenges with unique opportunities. Journal of Pharmaceutical Sciences. https://doi.org/10.1016/j.xphs.2020.08.029
Design optimisation of additively manufactured titanium lattice structures for biomedical implants
El-Sayed, M.A., Essa, K., Ghazy, M. and Hassanin, H. 2020. Design optimisation of additively manufactured titanium lattice structures for biomedical implants. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-020-05982-8
4D Printing of NiTi auxetic structure with improved ballistic performance
Hassanin, H., Abena, A., Elsayed, M.A. and Essa, K. 2020. 4D Printing of NiTi auxetic structure with improved ballistic performance. Micromachines. 11 (8), p. 745. https://doi.org/doi.org/10.3390/mi11080745