References | [1] Welber I. Factory of the future IEEE Control Syst Mag, 7 (2) (1987), pp. 20-22, 10.1109/MCS.1987.1105295 [2] Huang X., Halwani M., Muthusamy R., Ayyad A., Swart D., Seneviratne L., et al. Real-time grasping strategies using event camera J Intell Manuf, 33 (2) (2022), pp. 593-615, 10.1007/s10845-021-01887-9 [3] Perez-Vidal C., Gracia L., de Paco J.M., Wirkus M., Azorin J.M., de Gea J. Automation of product packaging for industrial applications Int J Comput Integr Manuf, 31 (2) (2018), pp. 129-137, 10.1080/0951192X.2017.1369165 [4] Oztemel E., Gursev S. Literature review of industry 4.0 and related technologies J Intell Manuf, 31 (1) (2020), pp. 127-182, 10.1007/s10845-018-1433-8 [5] Verl A., Valente A., Melkote S., Brecher C., Ozturk E., Tunc L.T. Robots in machining CIRP Ann, 68 (2) (2019), pp. 799-822, 10.1016/j.cirp.2019.05.009 URL https://www.sciencedirect.com/science/article/pii/S0007850619301660 [6] Eguti C.C.A., Trabasso L.G. Design of a robotic orbital driller for assembling aircraft structures Mechatronics, 24 (5) (2014), pp. 533-545, 10.1016/j.mechatronics.2014.06.007 URL https://www.sciencedirect.com/science/article/pii/S0957415814000968 [7] Karim A., Verl A. Challenges and obstacles in robot-machining IEEE ISR 2013 (2013), 10.1109/ISR.2013.6695731 [8] Chen Y., Dong F. Robot machining: Recent development and future research issues Int J Adv Manuf Technol, 66 (9) (2013), pp. 1489-1497, 10.1007/s00170-012-4433-4 [9] Chen D., Yuan P., Wang T., Cai Y., Tang H. A normal sensor calibration method based on an extended Kalman filter for robotic drilling Sensors (Switzerland), 18 (10) (2018), 10.3390/s18103485 [10] Yu L., Bi Q., Ji Y., Fan Y., Huang N., Wang Y. Vision based in-process inspection for countersink in automated drilling and riveting Precis Eng, 58 (2019), pp. 35-46, 10.1016/j.precisioneng.2019.05.002 URL https://www.sciencedirect.com/science/article/pii/S0141635919300613 [11] Yuan P., Wang Q., Wang T., Wang C., Song B. Surface normal measurement in the end effector of a drilling robot for aviation Proceedings - IEEE international conference on robotics and automation, IEEE (2014), pp. 4481-4486, 10.1109/ICRA.2014.6907513 [12] Frommknecht A., Kuehnle J., Effenberger I., Pidan S. Multi-sensor measurement system for robotic drilling Robot Comput-Integr Manuf, 47 (2017), 10.1016/j.rcim.2017.01.002 [13] Santos K.R.D.S., De Carvalho G.M., Tricarico R.T., Ferreira L.F.L., Villani E., Suterio R. Evaluation of perpendicularity methods for a robotic end effector from aircraft industry 2018 13th IEEE international conference on industry applications, INDUSCON 2018 - Proceedings (2019), pp. 1373-1380, 10.1109/INDUSCON.2018.8627218 [14] Yu L., Zhang Y., Bi Q., Wang Y. Research on surface normal measurement and adjustment in aircraft assembly Precis Eng, 50 (2017), pp. 482-493, 10.1016/j.precisioneng.2017.07.004 [15] Zhang Y., Bi Q., Yu L., Wang Y. Online adaptive measurement and adjustment for flexible part during high precision drilling process Int J Adv Manuf Technol, 89 (9) (2017), pp. 3579-3599, 10.1007/s00170-016-9274-0 [16] Lin M., Yuan P., Tan H., Liu Y., Zhu Q., Li Y. Improvements of robot positioning accuracy and drilling perpendicularity for autonomous drilling robot system 2015 IEEE international conference on robotics and biomimetics, IEEE-ROBIO 2015, IEEE (2015), pp. 1483-1488, 10.1109/ROBIO.2015.7418980 [17] Yuan P., Lai T., Li Y., Han W., Lin M., Zhu Q., et al. The attitude adjustment algorithm in drilling end-effector for aviation Adv Mech Eng, 8 (1) (2016), pp. 1-9, 10.1177/1687814016629348 [18] Shaomin L., Deyuan Z., yanqiang L., chunjian L., Hui T., guang M. A self-adaption normal direction and active variable stiffness low-frequency vibration-assisted system for curved surface drilling Precis Eng, 64 (2020), pp. 307-318, 10.1016/j.precisioneng.2020.04.017 URL https://www.sciencedirect.com/science/article/pii/S0141635920302233 [19] Xiao R., Xu Y., Hou Z., Chen C., Chen S. An automatic calibration algorithm for laser vision sensor in robotic autonomous welding system J Intell Manuf, 33 (5) (2022), pp. 1419-1432, 10.1007/s10845-020-01726-3 [20] Ayyad A., Halwani M., Swart D., Muthusamy R., Almaskari F., Zweiri Y. Neuromorphic vision based control for the precise positioning of robotic drilling systems Robot Comput-Integr Manuf, 79 (2023), Article 102419, 10.1016/j.rcim.2022.102419 URL https://www.sciencedirect.com/science/article/pii/S0736584522001041 [21] Furtado L.F.F., Coracini G.K., Villani E., Trabasso L.G. Comparative Study Between Two Methods for Perpendicularity Corrections in Robotic Manipulators 21st international congress of mechanical engineering - COBEM, vol. 5 (2011), pp. 1194-1200 Google Scholar [22] Tian W., Zhou W., Zhau W., Liao W., Zeng Y. Auto-normalization algorithm for robotic precision drilling system in aircraft component assembly Chin J Aeronaut, 26 (2) (2013), pp. 495-500, 10.1016/j.cja.2013.02.029 [23] Gao Y., Wu D., Nan C., Chen K. Normal direction measurement in robotic drilling and precision calculation Int J Adv Manuf Technol, 76 (5–8) (2015), pp. 1311-1318, 10.1007/s00170-014-6320-7 [24] Gao Y., Wu D., Dong Y., Ma X., Chen K. The method of aiming towards the normal direction for robotic drilling Int J Precis Eng Manuf, 18 (6) (2017), pp. 787-794, 10.1007/s12541-017-0094-4 [25] Yu L., Zhang Y., Bi Q., Wang Y. Research on surface normal measurement and adjustment in aircraft assembly Precis Eng, 50 (2017), pp. 482-493, 10.1016/j.precisioneng.2017.07.004 URL https://www.sciencedirect.com/science/article/pii/S0141635917300491 [26] Song T., Xi F., Guo S., Ming Z., Lin Y. A comparison study of algorithms for surface normal determination based on point cloud data Precis Eng, 39 (2015), pp. 47-55, 10.1016/j.precisioneng.2014.07.005 URL https://www.sciencedirect.com/science/article/pii/S014163591400124X [27] Rao G., Yang X., Yu H., Chen K., Xu J. Fringe-projection-based normal direction measurement and adjustment for robotic drilling IEEE Trans Ind Electron, 67 (11) (2020), pp. 9560-9570, 10.1109/TIE.2019.2952791 [28] Olsson T., Haage M., Kihlman H., Johansson R., Nilsson K., Robertsson A., et al. Cost-efficient drilling using industrial robots with high-bandwidth force feedback Robot Comput-Integr Manuf, 26 (1) (2010), pp. 24-38, 10.1016/j.rcim.2009.01.002 [29] Shah U.H., Muthusamy R., Gan D., Zweiri Y., Seneviratne L. On the design and development of vision-based tactile sensors J Intell Robot Syst, 102 (4) (2021), p. 82, 10.1007/s10846-021-01431-0 [30] Lambeta M., Chou P.W., Tian S., Yang B., Maloon B., Most V.R., et al. DIGIT: A novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation IEEE Robot Autom Lett, 5 (3) (2020), pp. 3838-3845, 10.1109/LRA.2020.2977257 arXiv:2005.14679 [31] hyun Choi S., Tahara K. Dexterous object manipulation by a multi-fingered robotic hand with visual-tactile fingertip sensors ROBOMECH J, 7 (1) (2020), 10.1186/s40648-020-00162-5 [32] Kumagai K., Shimonomura K. Event-based tactile image sensor for detecting spatio-temporal fast phenomena in contacts 2019 IEEE world haptics conference, Institute of Electrical and Electronics Engineers Inc. (2019), pp. 343-348, 10.1109/WHC.2019.8816132 [33] Product manual syntouch biotac® SP tactile sensor. Tech. rep., 2020. Google Scholar [34] Ito Y., Kim Y., Obinata G. Robust slippage degree estimation based on reference update of vision-based tactile sensor IEEE Sens J, 11 (9) (2011), pp. 2037-2047, 10.1109/JSEN.2010.2104316 [35] Rigi A., Baghaei Naeini F., Makris D., Zweiri Y. A novel event-based incipient slip detection using dynamic active-pixel vision sensor (DAVIS) Sensors, 18 (2) (2018), 10.3390/s18020333 URL https://www.mdpi.com/1424-8220/18/2/333 [36] Sun H., Kuchenbecker K.J., Martius G. A soft thumb-sized vision-based sensor with accurate all-round force perception Nat Mach Intell, 4 (2) (2022), pp. 135-145, 10.1038/s42256-021-00439-3 [37] Kakani V., Cui X., Ma M., Kim H. Vision-based tactile sensor mechanism for the estimation of contact position and force distribution using deep learning Sensors, 21 (5) (2021), 10.3390/s21051920 URL https://www.mdpi.com/1424-8220/21/5/1920 [38] Lepora N.F., Lloyd J. Optimal deep learning for robot touch: Training accurate pose models of 3D surfaces and edges IEEE Robot Autom Mag, 27 (2) (2020), pp. 66-77, 10.1109/MRA.2020.2979658 [39] Sajwani H., Ayyad A., Alkendi Y., Halwani M., Abdulrahman Y., Abusafieh A., et al. TactiGraph: An asynchronous graph neural network for contact angle prediction using neuromorphic vision-based tactile sensing Sensors, 23 (14) (2023), 10.3390/s23146451 URL https://www.mdpi.com/1424-8220/23/14/6451 [40] Ward-Cherrier B., Pestell N., Lepora N.F. NeuroTac: A neuromorphic optical tactile sensor applied to texture recognition Proceedings - IEEE international conference on robotics and automation (2020), pp. 2654-2660, 10.1109/ICRA40945.2020.9197046 arXiv:2003.00467 [41] Kakani V., Cui X., Ma M., Kim H. Vision-based tactile sensor mechanism for the estimation of contact position and force distribution using deep learning Sensors, 21 (5) (2021), 10.3390/s21051920 URL https://www.mdpi.com/1424-8220/21/5/1920 [42] Psomopoulou E., Pestell N., Papadopoulos F., Lloyd J., Doulgeri Z., Lepora N.F. A robust controller for stable 3D pinching using tactile sensing IEEE Robot Autom Lett, 6 (4) (2021), pp. 8150-8157, 10.1109/LRA.2021.3104057 [43] Muthusamy R., Huang X., Zweiri Y., Seneviratne L., Gan D., Muthusamy R. Neuromorphic event-based slip detection and suppression in robotic grasping and manipulation IEEE Access, 8 (2020), pp. 153364-153384, 10.1109/ACCESS.2020.3017738 arXiv:2004.07386 [44] Gupta A.K., Aitchison L., Lepora N.F. Tactile image-to-image disentanglement of contact geometry from motion-induced shear Proceedings of the 5th conference on robot learning, Proceedings of machine learning research, vol. 164, PMLR (2022), pp. 14-23 URL https://proceedings.mlr.press/v164/gupta22a.html [45] Mei B., Zhu W. Accurate positioning of a drilling and riveting cell for aircraft assembly Robot Comput-Integr Manuf, 69 (2021), Article 102112, 10.1016/j.rcim.2020.102112 URL https://www.sciencedirect.com/science/article/pii/S0736584520303227 [46] Jiang T., Cui H., Cheng X., Tian W. A measurement method for robot peg-in-hole prealignment based on combined two-level visual sensors IEEE Trans Instrum Meas, 70 (2021), pp. 1-12, 10.1109/TIM.2020.3026802 [47] AYYAD A. Robotic manipulator with visual guidance and tactile sensing (US 2023/0073681 A1. United States Patent and Trademark Office, March 2023). [48] Macdonald F.L.A., Lepora N.F., Conradt J., Ward-Cherrier B. Neuromorphic tactile edge orientation classification in an unsupervised spiking neural network Sensors, 22 (18) (2022), 10.3390/s22186998 URL https://www.mdpi.com/1424-8220/22/18/6998 [49] Dornaika F., Horaud R. Simultaneous robot-world and hand-eye calibration IEEE Trans Robot Autom, 14 (4) (1998), pp. 617-622, 10.1109/70.704233 [50] Ward-Cherrier B., Cramphorn L., Lepora N.F. Exploiting sensor symmetry for generalized tactile perception in biomimetic touch IEEE Robot Autom Lett, 2 (2) (2017), pp. 1218-1225, 10.1109/LRA.2017.2665692 [51] Sferrazza C., D’Andrea R. Design, motivation and evaluation of a full-resolution optical tactile sensor Sensors (Switzerland), 19 (4) (2019), 10.3390/s19040928 [52] Ward-Cherrier B., Cramphorn L., Lepora N.F. Tactile manipulation with a TacThumb integrated on the open-hand M2 gripper IEEE Robot Autom Lett, 1 (1) (2016), pp. 169-175, 10.1109/LRA.2016.2514420 [53] Liu C., Wang K., Wang Y., Yuan X. Learning deep multimanifold structure feature representation for quality prediction with an industrial application IEEE Trans Ind Inf, 18 (9) (2022), pp. 5849-5858, 10.1109/TII.2021.3130411 [54] Jiang Y., Yin S., Dong J., Kaynak O. A review on soft sensors for monitoring, control, and optimization of industrial processes IEEE Sens J, 21 (11) (2021), pp. 12868-12881, 10.1109/JSEN.2020.3033153 [55] Sun Q., Ge Z. Gated stacked target-related autoencoder: A novel deep feature extraction and layerwise ensemble method for industrial soft sensor application IEEE Trans Cybern, 52 (5) (2022), pp. 3457-3468, 10.1109/TCYB.2020.3010331 [56] Glorot X., Bengio Y. Understanding the difficulty of training deep feedforward neural networks Teh Y.W., Titterington M. (Eds.), Proceedings of the thirteenth international conference on artificial intelligence and statistics, Proceedings of machine learning research, vol. 9, PMLR, Chia Laguna Resort, Sardinia, Italy (2010), pp. 249-256 URL https://proceedings.mlr.press/v9/glorot10a.html [57] Zhu W., Mei B., Yan G., Ke Y. Measurement error analysis and accuracy enhancement of 2D vision system for robotic drilling Robot Comput-Integr Manuf, 30 (2) (2014), pp. 160-171, 10.1016/j.rcim.2013.09.014 URL https://www.sciencedirect.com/science/article/pii/S0736584513000732 [58] Romero-Ramirez F.J., Muñoz-Salinas R., Medina-Carnicer R. Speeded up detection of squared fiducial markers Image Vis Comput, 76 (2018), pp. 38-47, 10.1016/j.imavis.2018.05.004 URL https://www.sciencedirect.com/science/article/pii/S0262885618300799 [59] Akinlar C., Tonal C. EDCircles: Real-time circle detection by edge drawing (ED) 2012 IEEE international conference on acoustics, speech and signal processing (2012), pp. 1309-1312, 10.1109/ICASSP.2012.6288130 [60] Kuffner J., LaValle S. RRT-connect: An efficient approach to single-query path planning Proceedings 2000 iCRA. millennium conference. IEEE international conference on robotics and automation. Symposia proceedings (cat. no.00CH37065) (2000), pp. 995-1001, 10.1109/ROBOT.2000.844730 [61] Sucan I.A., Moll M., Kavraki L.E. The open motion planning library IEEE Robot Autom Mag, 19 (4) (2012), pp. 72-82, 10.1109/MRA.2012.2205651 [62] Mei B., Zhu W., Yan G., Ke Y. A new elliptic contour extraction method for reference hole detection in robotic drilling Pattern Anal Appl, 18 (3) (2015), pp. 695-712, 10.1007/s10044-014-0394-6 |
---|