
Precision Engineering 88 (2024) 367–381

A
0
n

Contents lists available at ScienceDirect

Precision Engineering

journal homepage: www.elsevier.com/locate/precision

A novel vision-based multi-functional sensor for normality and position
measurements in precise robotic manufacturing✩

Mohamad Halwani a,∗,1, Abdulla Ayyad a,1, Laith AbuAssi a, Yusra Abdulrahman a,b,
Fahad Almaskari b, Hany Hassanin c, Abdulqader Abusafieh d, Yahya Zweiri a,b

a Advanced Research and Innovation Center (ARIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
b Department of Aerospace Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
c School of Engineering, Technology, and Design, Canterbury Christ Church University, Canterbury CT1 1QU, UK
d Research and Development, Strata Manufacturing PJSC, Al Ain, United Arab Emirates

A R T I C L E I N F O

Keywords:
Multi-functional sensor
Vision-based tactile sensing
Precise manufacturing
Robot deburring

A B S T R A C T

Cobots play an essential role in the fourth industrial revolution and the automation of complex manufacturing
processes. However, cobots still face challenges in achieving high precision, which obstructs their usage in
precise applications such as the aerospace industry. Nonetheless, advances in perception systems unlock new
cobot manufacturing capabilities. This paper presents a novel multi-functional sensor that combines visual and
tactile feedback using a single optical sensor, featuring a moving gate mechanism. This work also marks the first
integration of Vision-Based Tactile Sensing (VBTS) into a robotic machining end-effector. The sensor provides
vision-based tactile perception capabilities for precise normality control and exteroceptive perception for robot
localization and positioning. Its performance is experimentally demonstrated in a precise robotic deburring
application, where the sensor achieves the high-precision requirements of the aerospace industry with a mean
normality error of 0.13◦ and a mean positioning error of 0.2 mm. These results open a new paradigm for using
vision-based sensing for precise robotic manufacturing, which surpasses conventional approaches in terms of
precision, weight, size, and cost-effectiveness.
1. Introduction

‘‘Factory of the future’’ is a term introduced in the 1980s [1] to
describe an evolving era led by robotics, automation, and artificial
intelligence. For instance, the fourth industrial revolution, or Industry
4.0, spotlights industrial automation and perceptive robotic systems
that can perform various tasks like: grasping [2], packaging [3], as
well as precise machining and manufacturing processes in unstructured
environments [4]. Robots provide high precision, consistency, and
operational efficiency compared to manual activity, making them valu-
able for automating precise manufacturing processes. Thereby, robotic
automation boosts performance and production output with lower costs
and error incidence [4–8].

The aforementioned advantages were key factors to the wide adop-
tion of robots in several manufacturing sectors, including the automo-
tive industry, whereas the aerospace industry is lagging in employing
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robotic solutions due to the higher level of precision needed. In the
aerospace industry, thousands of holes are drilled in aircraft structures
to act as mechanical connection points [9,10]. The positional accuracy
of the drilled holes must be within 0.5 mm to be considered accept-
able [11,12]. Also, the perpendicularity error of drilled holes must not
exceed 2◦ to ensure that the rivet connections work as expected [13–
15]. Failure to meet aerospace standards for drilled holes has a negative
effect on the connection quality and could reduce fatigue life due to
cyclic loading below the material strength [16]. The percentage of
fatigue failure accidents of the aircraft body due to the joints of the
structure is reported to be 70%, while rivet holes cause 80% of the
fatigue cracks [17]. Furthermore, a drilling burr can be formed if the
machining tool is not precisely aligned with the workpiece. This results
in poor surface quality, assembly problems, and reduced fatigue life
of the structure [18]. Perpendicularity and position errors are two of
the main geometrical tolerances of a drilled hole, and obtaining precise
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Fig. 1. The proposed system for combined normality and position measurement and control. A multi-functional vision-based sensor can be used for precise alignment and guidance
of the robotic end-effector utilizing only a single vision sensor.
measurements of the above quantities is fundamental to achieving those
tolerances.

These challenges become more apparent when utilizing cobots,
which, despite being safer, more cost-effective and easier to integrate
into the factory, provide lower precision than traditional industrial
robots. This is especially true when the robot is operating in unstruc-
tured environments with limited information about its surroundings
and target workpieces. As a result, enhancing the precision of cobots
has been an active area of research, where works in literature can
be divided into two approaches: the first approach aims to augment
the cobot’s precision through more advanced low-level control of the
robot’s joints. In contrast, the second approach focuses on using sensory
feedback and closed-loop control to improve the robot’s repeatability.
The current advancements in sensor technology have been a leading
factor to significant growth in the adoption of robots in automated
manufacturing [4]. Sensors have become an essential aspect in the
development of intelligent robotic manufacturing systems as they allow
for real-time monitoring and control of the manufacturing process,
resulting in improved system performance, efficiency, and safety [4,
19].

Visual and tactile perception is crucial for cobot operations in real-
world and industrial environments, where they provide useful feedback
that can be utilized to improve the precision and repeatability of cobots,
as well as increase their applicability and safety. With the advance-
ment of these technologies, cobots will be able to execute dexterous
manipulation tasks that will serve the manufacturing industry and
boost productivity, efficiency, and workplace safety. In our previous
work [20], we addressed the positional accuracy of robotic machin-
ing using neuromorphic vision-based control and achieved an average
positional error of less than 0.1 mm. In this work, we address the
normality/perpendicularity errors of robotic machining and introduce
a novel vision-based sensor capable of measuring both the tool’s nor-
mality and position with tolerances below 1◦ and 0.2 mm, respectively.
We also present the control law that uses the sensor measurements
to precisely position and align the machining end-effector relative
to an arbitrarily placed workpiece. The proposed vision-based sensor
mounted on a collaborative robot can be seen in Fig. 1.

In recent years, different methods have been proposed in the liter-
ature to measure and align a robotic end-effector with the normal axis
of a workpiece. Several studies employ an array of distance sensors
to adjust the end-effector’s normality; but use different algorithms,
arrangements, and calibration methods [11,12,19,21–24]. Other well-
studied methods include utilizing 3D laser scanners [25,26], fringe
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projection sensors [27], or force sensors [28] for normality measure-
ments. Despite the high precision of the aforementioned methods,
they have limitations including high cost, complex calculations, exces-
sive instrumentation requirements, relatively high weight, and limited
functionality. Almost all of the aforementioned sensors only provide
measurements on the tool’s normality and require additional sensors
to be used for positioning. For instance, the work in [12] uses a set
of four contact-less distance sensors to measure the normality of a
workpiece, while a 2D camera and three laser sensors are used to
control the robot’s positioning. The multi-sensor approach not only
increases the payload of the robot but also increases the development
and maintenance costs. Furthermore, it increases system complexity,
requiring advanced calibration and data processing. In this paper, we
propose a novel vision-based tactile sensor that uses a single camera
for both robot positioning and normal alignment. Our novel design
combines both perception capabilities in a single modality, while prior
works in the literature address positioning and normality as separate
problems with an independent sub-system for each. Consequently,
our sensor significantly outperforms conventional options by offering
greater functionality while reducing cost, weight, and the need for
complex instrumentation and wiring.

In contrast to laser projection techniques, Vision-Based Tactile Sen-
sors (VBTS) offer a more robust and adaptable option for precise
measurements. Unlike laser systems, which often come with high costs,
difficult computations, and excessive instrumentation requirements,
VBTS simplifies the system by reducing both complexity and cost.
They also excel in flexibility, easily adapting to a variety of surface
textures, materials, and shapes without the need for special surface
treatments like laser projection techniques. Moreover, VBTS are gen-
erally considered safer, as they do not involve the hazards associated
with laser use. With the potential to serve as a multi-purpose sensor,
VBTS are capable of sensing other metrics such as vibrations and
contact forces. Vision-based tactile sensors consist of optical sensors
that monitor the interior surface of a low-cost elastic body (referred
to as the tactile surface). Internal markers that re-arrange due to the
elastic body deformation upon any physical contact contain rich tactile
information that can be decoded to estimate contact forces, normality,
and various measurements from the contact surface, as illustrated
in Fig. 2. Vision-based tactile sensors have gained interest in the
robotics community because they offer advantages over conventional
tactile sensors. These advantages include high spatial resolution, design
simplicity, and low instrumentation requirements [29]. Studies have
shown the benefits of using vision-based tactile sensors in applications
such as object manipulation [30–32], slip detection [33–35], contact
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Fig. 2. The configuration and principle of operation of vision-based tactile sensors. A camera observes the deformation of an elastic body once it presses against a contact surface.
The camera’s observations contain rich information from the markers’ rearrangement due to the elastic body deformation, which can be used to estimate the contact pose in terms
of normality and depth.
forces measurement [31,36,37], contact pose estimation [38,39], and
texture recognition [33,40]. In [41], stereo cameras for vision-based
tactile sensor were used to estimate force distribution, contact position,
angular displacement, and contact area. However, they reported an
angle error of 2.235◦, which is unsatisfactory for machining in the
aircraft industry. In [38], a vision-based tactile sensor was trained to
predict the 3D pose of objects and edges that are in contact to achieve
object manipulation. The study achieved a Mean Absolute Error (MAE)
of 0.3◦ for roll and pitch measurements. Another study [42] measured
the contact pose components using tactile sensors, but for a grasping
task, they achieved MAE of 0.33◦ and 0.28◦ for roll and pitch, respec-
tively. However, no studies to date have considered the application of
vision-based tactile sensors in precise robotic machining, nor do they
provide the required tolerances or controls required for manufacturing
processes in the aerospace industry. Additionally, prior works limit
the use of the imaging sensor for proprioceptive sensing to provide a
specific tactile sensing task and do not exploit the flexibility of imaging
sensors for additional exteroceptive tasks. Our work overcomes this
by using a single camera for both proprioceptive and exteroceptive
sensing. Table 1 compares several recent studies on robotic perception
technologies in terms of functionality and application. It shows that
this paper constitutes the first work in literature to combine proprio-
ceptive, tactile sensing and exteroceptive sensing for positioning using
a single imaging sensor. Although prior work on VBTS has developed
algorithms to estimate tactile quantities such as: contact pose, slippage,
and force; none have ever investigated using the same camera of VBTS
for exteroceptive perception functions. This idea significantly simplifies
the system, reducing both complexity and cost. While a dual-camera
setup might seem simpler, it would increase the cost and complexity
for high-speed industrial applications, where robust, high-frame-rate
cameras are often required. In addition, this added feature of our design
facilitates wider adoptions and applications of VBTS, especially since
most robot manipulation tasks require a combination of vision and
touch sensing. Furthermore, this paper presents the first vision-based
tactile sensor for precise robotic machining, while prior work on VBTS
mostly targets challenges in gripping and grasping.
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In this paper, we propose a novel vision-based tactile sensor for the
normality and positional control of precise robotic machining tasks.
The sensor combines proprioceptive and exteroceptive capabilities,
where a single camera observes both the surrounding environment for
robot guidance and the inner surface of an elastic body to estimate
tactile properties [47]. The sensor features a moving gate mecha-
nism, which enables switching between exteroceptive perception for
robot localization and proprioceptive sensing for tactile feedback. The
sensor enables the robot to localize a workpiece in 6-DoF, and uses
position-based visual servoing (PBVS) to control the robot’s position
accordingly. As the robot achieves contact with the workpiece, the
sensor’s camera observes the deformation of the tactile surface, and
utilizes Convolutional Neural Networks (CNNs) to relate the obtained
image of surface deformation to the required contact properties in
terms of normality and depth. Based on the sensor’s measurement,
the robot regulates the machining tool’s pose as per the tolerances
required in the aerospace industry. We validated the sensor presented
experimentally in a robotic deburring application and presented both
quantitative and qualitative analyses of the obtained results. A video
demonstration of the sensor and corresponding control laws in action
can be accessed through this link: https://drive.google.com/file/d/1-
JCEoXYHVApuky3Aln8KjX2k4ZXQiSRy/view?usp=sharing. The main
contributions of this paper can be summarized as follows:

• We develop a novel multi-functional sensor configuration for
robotic manufacturing that combines proprioceptive and extero-
ceptive sensing using only a single camera. This proposed design
offers improvements in cost, weight, and design simplicity over
prior work in the literature, pioneering the application of tactile
sensing in robotic manufacturing tasks.

• For the first time, we propose vision-based tactile sensing for nor-
mality adjustment in precise robotic machining. We develop the
corresponding perception and control algorithms, which employ a
Convolutional-Neural-Network architecture and training method-
ology. This approach outperforms State-of-The-Art, achieving a
mean absolute error of 0.13◦ and significantly enhancing preci-
sion in robotic machining.

https://drive.google.com/file/d/1-JCEoXYHVApuky3Aln8KjX2k4ZXQiSRy/view?usp=sharing
https://drive.google.com/file/d/1-JCEoXYHVApuky3Aln8KjX2k4ZXQiSRy/view?usp=sharing
https://drive.google.com/file/d/1-JCEoXYHVApuky3Aln8KjX2k4ZXQiSRy/view?usp=sharing
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Table 1
An overview of the scope and approach of recent works on robotic perception technologies. This paper is the first work in literature to address both
proprioceptive and exteroceptive perception requirements using a signal optical sensor, and constitutes the first VBTS sensor for precise machining
applications.

Study Proprioceptive
perception

Exteroceptive
perception

Sensors Application

E. Pso. et al. [42] Yes No VBTS Grasping
N. Lepora et al. [38] Yes No VBTS Contact estimation
R. Muthusamy et al. [43] Yes No VBTS Grasping
A. Gupta et al. [44] Yes No VBTS Contact estimation
M. Lambeta et al. [30] Yes No VBTS In-hand manipulation
A. Rigi et al. [35] Yes No Event-based camera Slip detection
T. Olsson et al. [28] Yes No Force sensor Robotic drilling
B. Mei et al. [45] No Yes 2D Camera and laser sensors Robotic drilling
T. Jiang et al. [46] No Yes Multiple cameras peg-in-hole
T. Song et al. [26] No Yes Laser sensors Surface normal measurement
G. Rao et al. [27] No Yes 2D camera and fringe projection sensor Robotic drilling
P. Yuan et al. [11] No Yes 2D camera and laser sensors Robotic drilling
A. Ayyad et al. [20] No Yes Neuromorphic vision Robotic drilling
This work Yes Yes VBTS Robotic deburring
Fig. 3. Robotic deburring setup that illustrates the coordinate frames used for navigation and control.
• We formulate and validate the visual guidance and control laws
that utilize the camera’s exteroceptive feedback to precisely posi-
tion the robotic tool relative to a target workpiece with 0.2 mm
accuracy.

• We perform experimental validation and testing of the proposed
sensor in a robotic deburring setup and present a detailed qual-
itative and quantitative analysis of the obtained results. Results
show that the proposed sensor and perception algorithms pro-
vide the positioning and normality requirements of automated
manufacturing in the aerospace industry.

The rest of this paper is organized as follows: Section 2 outlines
the setup and configuration of the proposed deburring robotic setup.
Section 3 describes the working principle and the methodology. In
Section 4, we present both qualitative and quantitative results of the
proposed system. Finally, in Section 5, we conclude the paper.

2. Robotic setup

The overall setup of the multi-functional vision-based sensor with
the robotic manipulator can be seen in Figs. 1 and 3. The presented
system uses the camera feedback to both position and align a deburring
tool with pre-drilled holes in a workpiece. We used Universal Robot’s
UR10,2 which provides a repeatability value of 0.1 mm. To address
the full reach requirement for larger workpieces, the robot can be
mounted on a mobile platform, enabling it to navigate and adapt to
large-scale aircraft components, as demonstrated in our prior work

2 UR10: https://www.universal-robots.com/media/50880/ur10_bz.pdf.
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in [20]. Fig. 4 shows the end-effector configuration, which consists of
the deburring-tool and our multi-functional vision-based sensor. Inte-
grating the sensor into the robot system is a straightforward process,
where the sensor can be easily mounted onto the robot’s end-effector,
allowing for seamless integration without the need for extensive modi-
fications or instrumentation requirements. The images of the DAVIS346
camera3 with a resolution of 346 × 260 were used for perception. The
camera integrated into the system is capable of providing both images
and events, making it versatile for perception tasks. In the context
of tactile sensing, both image-based and event-based approaches have
been utilized in literature [40,48]. An upcoming study will specifically
investigate and compare the effectiveness of image-based and event-
based Visual Tactile Sensing (VBTS) for robotic machining applications.
It is important to note that the design and algorithms reported in this
paper are not limited to a specific camera model, such as the DAVIS346.
Instead, any RGB camera can be employed, offering flexibility in sensor
selection and potentially reducing size and weight according to specific
requirements. For the purpose of robot navigation and control, we
define the following frames of reference:

• 𝐵 : The robot base coordinate frame.
• 𝐸 : The robot end-effector coordinate frame.
• 𝑆 : The deburring tool coordinate frame.
• 𝑇 : The tactile surface coordinate frame.
• 𝐶 : The camera coordinate frame.
• 𝑊 : The workpiece coordinate frame.

3 DAVIS346: https://inivation.com/wp-content/uploads/2019/08/
DAVIS346.pdf.

https://www.universal-robots.com/media/50880/ur10_bz.pdf
https://inivation.com/wp-content/uploads/2019/08/DAVIS346.pdf
https://inivation.com/wp-content/uploads/2019/08/DAVIS346.pdf
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Fig. 4. The end-effector configuration shows the multi-functional vision-based sensor with the deburring tool. When the sensor gate is opened, the output of the vision sensor
shows the surrounding environment for the robot guidance task (Exteroceptive perception). However, while the sensor gate is closed, the vision sensor output shows the sensor’s
internal surface for the tactile sensing task (Proprioceptive perception). Both of these tasks are executed using position-based visual servoing (PBVS) for robot positioning and
angle-based tactile servoing (ABTS) for normality adjustment.
• 𝐴: The fiducial/ArUco coordinate frame.
• ℎ𝑖 : The coordinate frame of the ith reference hole.

We define the affine transformation matrix 𝑇 𝑇𝑆 ∈ R4×4 that maps
from coordinate frame 𝑆 to 𝑇 as follows:

𝑇 𝑇𝑆 =

[

𝑇𝑅𝑆
𝑇
𝑇 𝑃𝑠

𝟎𝑇 1

]

(1)

where, 𝑇𝑅𝑆 ∈ R3×3 is the rotation matrix, and 𝑇
𝑎 𝑃𝑏 ∈ R3 gives the

relative position of point b to point a described in coordinate frame
𝑇 .

Also, solving the robot’s forward kinematics allows calculating the
transformation from 𝐸 to 𝐵 as follows:

𝐵𝑇𝐸 = 𝑔(𝜃), 𝜃 ∈ C (2)

where C is the robot’s configuration space, 𝜃 is the measured joint
angles for the articulated manipulator, and 𝑔(𝜃) is a non-linear function
that defines robot kinematics. Furthermore, the constants 𝐸𝑇𝐶 , 𝐸𝑇𝑇 ,
and 𝑐𝑇𝑆 may be determined using the geometrical calibration method
detailed in [20,49]. As a result, 𝐵𝑇𝐸 and the calibrated transformations
can be combined to compute 𝐵𝑇𝐶 , 𝐵𝑇𝑇 , and 𝐵𝑇𝑆 .

The robot has to identify 𝐵𝑇ℎ𝑖 to perform the machining operation.
We solve this transformation in two steps. In the first step, we esti-
mate the hole’s position 𝐵

𝐵𝑃ℎ𝑖 using exteroceptive visual guidance as
explained in Section 3.5. We then estimate the hole’s normal vector
using visual tactile sensing measurements as explained in Section 3.4.
Using these measurements, our visual and tactile control law precisely
aligns the deburring tool with the target holes in the workpiece, as
described in detail in Section 3.6.

3. Methods

3.1. Vision-based tactile sensing operation principle

Vision-based tactile sensors (VBTS) are a type of tactile sensor that
uses cameras to detect changes in the internal structure of a low-cost
elastic tactile interface resulting from the application of forces. The
inner surface of the tactile interface often includes a collection of visual
markers as shown in Fig. 2. When the sensor is pressed against an
object, the tactile interface is deformed, causing the internal markers
to rearrange in response to the magnitude and direction of the contact
371
Table 2
Design features of the tactile sensor elastic material and internal markers.

Parameter Value

Elastomer material rubber (Hardness: Shore 00–30)
Elastomer size 40 mm diameter
Markers material plastic
No. of markers 53
Size of markers 2.5 mm
Size of the sensor enclosure (L × H × W) 20 cm × 12 cm ×10 cm
Sensor 3D printedenclosure material ABS
Sensor overall weight 0.47 kg

force as can be seen in Fig. 5. This allows the VBTS to detect and
measure the forces and positions of objects in contact with the sensor.

VBTS offers advantages over conventional tactile sensors in terms
of design simplicity and high spatial resolution [29]. Furthermore,
since the camera is the only active component in the sensor, VBTS has
considerably lower instrumentation requirements compared to other
strain-gauge or piezo-electric tactile sensors. Despite those advantages,
one of the main challenges of VBTS is the lifetime of the elastic tactile
interface, which might suffer from permanent deformation over long-
term use. However, as the tactile interface is made from low-cost
silicon material, it can be easily replaced once its lifetime has passed.
Another challenge with VBTS is the need for the development of novel
specialized algorithms to infer tactile measurements from images of the
deformation, which heavily relies on the precise detection and labeling
of the visual markers in each image frame to accurately track their
displacement. Several studies measured contact forces and position by
tracking the markers’ displacement directly when an external force is
applied to the sensor’s surface [50]. This can be time-consuming and
lead to inaccurate tactile sensing measurements if certain markers are
not detected [51]. To address this problem, we have used convolutional
neural networks (CNNs) to extract useful information directly from
visual feedback to estimate the contact pose in terms of normality and
depth. This approach can improve the accuracy and efficiency of VBTS
by eliminating the need for manual marker labeling.

3.2. Sensor design

The proposed multi-functional vision-based sensor comprises a 3D-
printed housing structure that holds the camera and the sensor tip,
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Fig. 5. The camera feedback shows the tactile interface: (a) before contact with the workpiece, and (b) after contact with the workpiece. The deformation of the tactile interface
changes the arrangement pattern of the visual markers in the image. This pattern can then be used to infer different contact quantities including force, normality, and depth.
Fig. 6. (a) The internal surface of the tactile sensor shows the markers’ arrangement. We chose the colors for the tactile sensor (white) and the 2 mm diameter beads
(black) to have maximum color contrast for better visibility. (b) 3D-printed sensor enclosure compromising the elastic body mounted on a servo motor-controlled gate for
exteroceptive/proprioceptive perception.
as shown in Fig. 6. The sensor tip is directly in front of the camera,
with air as the sole medium between them. The sensor tip is a hollow
hemispherical-shaped elastic surface fixed to the front side of a moving
gate controlled by a servo motor. The hemispherical shape of the
sensor tip helps evenly distribute the stress across the sensor and allows
maximum displacement of markers, improving the tactile perception
of the sensor [52]. The tactile surface has markers arranged on the
internal surface and is made by molding a low-cost silicone soft ma-
terial of shore hardness 00–30. The tactile surface elastomer material
is chosen to have large deformations without breaking or losing its
shape, as it allows the sensor to deform easily in response to tactile
stimuli. The sensor design specifications are presented in Table 2. The
internal markers are black plastic beads that are colored differently
compared to the tactile surface to ensure maximum color contrast for
better visibility. The markers are arranged radially in the hemisphere
at different uniform angles. Circular markers are non-directional and
provide the same distinctive features in the image independent of
motion direction [32]. To view the markers, a camera is mounted facing
the backside of the tactile surface. When force is applied to the elastic
surface of the sensor, the hemispherical surface deforms considerably,
changing the magnitude and direction of the markers’ displacement.
To ensure good visibility, we illuminated the internal body enclosure
with white LEDs. Our sensor fabrication process is similar to the making
process in [37] with a difference in the markers’ installation step, where
their markers are painted protrusions on the internal surface of the
elastic body.
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3.3. VBTS contact pose dataset

Training and testing data for the tactile sensor was generated using
a robotic manipulator and a calibrated flat surface of precisely known
orientation and position as shown in Fig. 7-a. While some aircraft
parts may have a slight curvature, this curvature is typically low,
allowing most workpieces to be considered locally flat. The data col-
lection routine with the measurements range is illustrated in Fig. 7-b,
demonstrating the range of poses and orientations covered during data
generation. The manipulator is commanded to orient the end-effector in
spherical geometry by changing the roll 𝜃 and pitch 𝜙 angles. For each
set of angles, the robotic manipulator proceeds to the contact surface
and presses the tactile surface along its normal vector 𝑍 against the flat
contact surface. The dataset includes the sensor orientation measured
by the two normal angle components of the sensor tip (𝑖.𝑒., roll 𝜃 and
pitch 𝜙 angles) and a measure of how deep the tactile surface is pressed
against a flat contact surface after achieving contact.

An image is sampled along with the normal angle and sensor depth
at each variation of the roll or the pitch angles only after achieving
contact with the flat surface. For each pose, five iterations are sampled,
resulting in 2440 frames. To expand the dataset, frame augmentation
was performed by rotating each frame three times by 90◦ each. Also,
frame-shifting and scaling were performed to account for any slight
changes in the sensor location relative to the vision sensor that may
result from the excessive stress on the tactile surface. As pre-processing
steps, the images are cropped to select the Region-of-Interest (ROI)



Precision Engineering 88 (2024) 367–381M. Halwani et al.
Fig. 7. The data collection setup with the tactile sensor mounted on a UR10 robot.
(a) A calibrated flat surface is used for data collection, where the angles and depth
are varied and the corresponding images are sampled from the camera feedback. (b)
Roll 𝜃, pitch 𝜙 and depth 𝑍 of the sensor frame relative to the workpiece surface
are predicted. The table shows the measurements range for dataset collection used for
training/testing the neural network.

and eliminate any pixels outside the inner surface of the sensor in
the image. The ROI is resized to an image size of 100 × 100 pixels.
Finally, the pixel intensity values are normalized to [0, 1] using min–
max normalization. The dataset was split in the ratio of 60:20:20, that
is 60% data will go to the training set, 20% to the validation set and
the remaining to the testing set.

3.4. Contact pose estimation using convolutional neural networks

Modern industries are being significantly transformed through the
use of intelligent automation technologies. In particular, deep learn-
ing algorithms are rapidly getting involved in most of the fields of
industry [53–55]. The use of deep learning is greatly accelerating the
development of computer vision algorithms, which in turn directly
contributes to the development of vision-based tactile sensor algorithms
for various fields and applications [38,41,48]. In this subsection, we
present our proposed Convolutional Neural Network to precisely es-
timate the relative contact pose between the machining tool and the
workpiece in terms of normality and depth within the specifications of
the aerospace industry. A CNN regression model with the architecture
shown in Fig. 8 is trained using the dataset explained in Section 3.3.
The input to the CNN is a 100 × 100 image. The CNN consists of 𝑁𝑐𝑜𝑛𝑣
convolutional layers, each layer contains two consecutive convolution
operations with 𝑁 𝑖

𝑓 𝑖𝑙𝑡𝑒𝑟𝑠 filters and a kernel size of 𝐾 𝑖
𝑠𝑖𝑧𝑒, where 𝑖 ∈

[1, 𝑁 ]. Each convolutional layer is followed by a 2 × 2 max-pooling
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𝑐𝑜𝑛𝑣
layer. The output of the last convolutional layer is then passed through
a sequence of 𝑁𝑑𝑒𝑛𝑠𝑒 fully connected layers each having a width of
𝑁 𝑗

𝑤𝑖𝑑𝑡ℎ, where 𝑗 ∈ [1, 𝑁𝑑𝑒𝑛𝑠𝑒]. Each fully connected layer is followed
by a ReLU activation function. The final layer contains three units
corresponding to roll 𝜃, pitch 𝜙, and depth 𝑍.

To select the best model hyperparameters, we run a Bayesian hyper-
parameter optimization process over the parameters shown in Table 3
following the guidelines and ranges explained in [38]. We limited
the maximum range for the number of layers and filters to enable
the CNN model to run in real-time on an embedded PC with lim-
ited computational power, which is critical for closed-loop control
applications similar to ours. For each iteration of the Bayesian hyperpa-
rameter optimizer, the model weights are initialized using the built-in
ε𝑔𝑙𝑜𝑟𝑜𝑡_𝑢𝑛𝑖𝑓𝑜𝑟𝑚ε weight initializer in Keras [56]. We selected the Mean
Squared Error as the training loss function. The training and model
optimization was implemented on a laptop with 𝑅𝑇𝑋3080 GPU running
Windows 10. The resultant optimal CNN model parameters are also
shown in Table 3.

3.5. Visual detection for robot guidance

This subsection presents the visual detection methods used for robot
guidance and the 6-Dof localization of both the workpiece and its
holes. Machine vision has been extensively employed in the literature
for visual guidance to improve the end-effector’s positional accuracy.
Several studies, including [45,57], have explored 2D vision systems
for enhancing positional accuracy. [12] combined 2D camera detection
with laser sensors. In this study, we employ a dual-method approach:
initially leveraging fiducials for global localization of the workpiece,
followed by hole detection for precise refinement. In the first stage,
ArUco fiducials are used to estimate the workpiece’s pose. Using a
priori estimate of the 𝐵 �̂�𝐴𝑟, the camera is placed facing the ArUco
fiducial while the guidance/tactile sensing gate is opened; then it uses
the ArUco detection method included in the OpenCV library [58] to
refine 𝐵 �̂�𝐴𝑟. Since the transformation 𝐴𝑟𝑇ℎ𝑖 between each hole and the
fiducial is known, an initial estimate of each hole’s pose relative to the
robot base can then be obtained as follows:

𝐵 �̂�ℎ𝑖 = 𝐵 �̂�𝐴𝑟 𝐴𝑟𝑇ℎ𝑖 (3)

We utilize the camera’s visual feedback to detect and localize cir-
cular holes to refine each hole’s pose estimate to the required sub-
millimeter accuracy. The robot first moves the camera to face each
hole with a pre-defined standoff 𝛿𝑍 using the priori 𝐵 �̂�ℎ𝑖 . Once the
camera is facing the hole, the robot refines the estimate 𝐵 �̂�ℎ𝑖 using the
ED circle detector presented in [59]. This method is parameter-free,
runs in real-time, and produces a low number of false positives. The ED
circles detector outputs an array of all circular features in the image:

𝑐𝑘 = ⟨𝑢𝑘, 𝑣𝑘, 𝑟𝑘⟩, 𝑘 ∈ [0, 𝑁𝑐 ] (4)

where (𝑢𝑘, 𝑣𝑘) are the pixel coordinates of the kth detected circle, 𝑟𝑘
is the corresponding circle radius in pixel coordinates, and 𝑁𝑐 is the
overall number of detected circles. Since the camera’s stand-off relative
to the hole is known, these measurements can be converted to cartesian
coordinates in meters using the pinhole model as follows:

𝑥𝑘 =
𝑓
𝛿𝑍

(𝑢𝑘 − 𝑐𝑥)

𝑦𝑘 =
𝑓
𝛿𝑍

(𝑣𝑘 − 𝑐𝑦)

𝑅𝑘 =
𝑓
𝛿𝑍

𝑟𝑘

(5)

where 𝑓 is the camera’s focal length, (𝑐𝑥, 𝑐𝑦) are the camera’s optical
center, and (𝑥 , 𝑦 ) denote the cartesian coordinates of the kth circle.
𝑘 𝑘
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Fig. 8. The CNN architecture used in this work. A tactile image is processed by a sequence of convolutional, max pooling and fully connected layers.
Table 3
The ranges for the CNN hyperparameter optimization along with the corresponding optimal values.

Parameter Parameter range Optimal value

Number of convolutional layers 𝑁𝑐𝑜𝑛𝑣 [1, 2, 3, 4] 4
Number of convolutional filters 𝑁𝑓𝑖𝑙𝑡𝑒𝑟𝑠 [32, 64, 128, 256] {𝑁1

𝑓𝑖𝑙𝑡𝑒𝑟𝑠 ,…𝑁4
𝑓𝑖𝑙𝑡𝑒𝑟𝑠} = {256, 256, 64, 32}

Size of convolutional kernel 𝐾𝑠𝑖𝑧𝑒 [3 × 3, 5 × 5] {𝐾1
𝑠𝑖𝑧𝑒 ,…𝐾4

𝑠𝑖𝑧𝑒} = {5 × 5, 5 × 5, 3 × 3, 3 × 3}

Number of fully connected layers 𝑁𝑑𝑒𝑛𝑠𝑒 [1, 2, 3, 4, 5] 4
Width of fully connected layers 𝑁𝑤𝑖𝑑𝑡ℎ [16, 32, 64, 128, 256, 512] {𝑁1

𝑤𝑖𝑑𝑡ℎ ,…𝑁4
𝑤𝑖𝑑𝑡ℎ} = {256, 128, 64, 16}

Dropout coefficient [0.0, 0.5] 0.0
Batch size [64, 128, 256, 512] 512
Number of epochs [128, 256, 512, 1024] 512
To filter out undesired circle detections, we calculate the probability
of each circle being the target hole using prior knowledge of the circle’s
radius denoted by 𝑅∗, and assuming that the target hole should ideally
be aligned with the camera’s optical axis such that 𝑥𝑘 = 𝑦𝑘 = 0. We
model any deviation from these nominal conditions as a multivariate
normal distribution and calculate a score 𝑝𝑘 for each circle detected as
follows:

𝑝𝑘 =
𝑒𝑥𝑝(−0.5(𝜒𝑘 − 𝜇)𝑇𝛴−1(𝜒𝑘 − 𝜇))

√

(2𝜋)3|𝛴|

(6)

where:

𝜒𝑘 =
⎡

⎢

⎢

⎣

𝑥𝑘
𝑦𝑘
𝑅𝑘

⎤

⎥

⎥

⎦

(7)

and:

𝜇 =
⎡

⎢

⎢

⎣

0
0
𝑅∗

⎤

⎥

⎥

⎦

(8)

and 𝛴 is a tunable covariance matrix.
The circle with the highest score is then selected as:

𝑘∗ = arg max
𝑘

𝑝𝑘 (9)

and the hole’s position vector relative to the camera is constructed as
follows:

𝐶
𝐶𝑃ℎ𝑖 =

⎡

⎢

⎢

⎣

𝑥𝑘∗
𝑦𝑘∗
𝛿𝑍

⎤

⎥

⎥

⎦

(10)

Finally, using the camera’s pose 𝐵𝑇𝑐 obtained by solving the robot’s
forward kinematics, the hole’s pose relative to the inertial base frame
is calculated as:

𝑇 = 𝑇 𝑇 (11)
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3.6. Robot guidance and control

Our proposed visual and tactile sensor was integrated into a full
system with a cobot and a deburring end effector to experimentally
verify the proposed design and algorithms. In this section, we will
explain the control logic, including both position-based visual ser-
voing (PBVS) for robot positioning and angle-based tactile servoing
(ABTS) for normality adjustment. Sections 3.6.1 and 3.6.2 include
comprehensive descriptions of both phases.

3.6.1. Position-based visual servoing (PBVS)
The PBVS stage directs the deburring end-effector towards initial

alignment with the holes in the workpiece using the pose estimates
obtained from visual feedback, as explained in Section 3.5. From the
estimated hole pose 𝐵𝑇ℎ𝑖 , we can define a desired end-effector pose
𝐵 �̄�𝐸 as follows:

𝐵 �̄�𝐸 =𝐵 𝑇ℎ𝑖 ℎ𝑖 �̄�𝑆 (𝐸𝑇𝑆 )−1 (12)

where ℎ𝑖 �̄�𝑆 is the desired relative pose between the hole and the tool,
and 𝐸𝑇𝑆 is the calibrated tool pose relative to the robot end-effector.

Accordingly, we define a desired joint angles vector �̂� ∈ C such that:

𝐵 �̄�𝐸 = 𝑔(�̄�) (13)

Eq. (13) is solved to obtain �̄� using the Newton–Raphson inverse
kinematic approach of the open-source Kinematic and Dynamics Li-
brary (KDL).4 We then generate a joint trajectory �̄�(𝑡) between the
current joint angles and the desired ones using the implementation
of RRT-connect [60] of the Open Motion Planning Library [61]. A
low-level PID controller then controls each joint to follow �̄�(𝑡).

A control loop diagram for position-based robot control is shown
in Fig. 9. This process explained above is repeated multiple times until

4 KDL: https://www.orocos.org/kdl.html.

https://www.orocos.org/kdl.html


Precision Engineering 88 (2024) 367–381M. Halwani et al.

.

Fig. 9. Position-based robot control loop.

Fig. 10. The angle-based tactile servoing control loop.

the pose error converges. The pose error is defined as the difference
between the current end-effector pose and the desired one, and is
denoted by: 𝐸 = (𝐵𝑇𝐸 )−1 𝐵 �̄�𝐸 .

3.6.2. Angle-based tactile control
This stage of the controller is concerned with the fine refinement

of the deburring tool’s pose to guarantee perpendicularity and precise
depth during the machining process. It uses the contact pose estimates
from the CNN to refine the alignment of the tool. Once the tactile
surface achieves contact with the workpiece, the CNN outputs roll 𝜃,
pitch 𝜙, and depth 𝑍 estimates. We define the rotation vector 𝑟 =
[𝜃, 𝜙, 0]𝑇 between the end-effector and the workpiece. This rotation
vector can be converted to a 3 × 3 rotation matrix using the Rodrigues
rotation formula as follows:

𝑇𝑅𝑊 =
⎡

⎢

⎢

⎣

𝜃2𝜎 + 𝑐𝑜𝑠(‖𝑟‖) 𝜃𝜙𝜎 −𝜙𝑠𝑖𝑛(‖𝑟‖)
𝜙𝜃𝜎 𝜙2𝜎 + 𝑐𝑜𝑠(‖𝑟‖) 𝜃𝑠𝑖𝑛(‖𝑟‖)

𝜙𝑠𝑖𝑛(‖𝑟‖) −𝜃𝑠𝑖𝑛(‖𝑟‖) 𝑐𝑜𝑠(‖𝑟‖)

⎤

⎥

⎥

⎦

(14)

where 𝜎 = 1 − 𝑐𝑜𝑠(‖𝑟‖).
Additionally, depth measurements 𝑍 can be used to refine the

priori estimate of the workpiece’s position relative to the tactile sensor
denoted by 𝑇

𝑇
̂⃗𝑃𝑊 , as follows:

𝑇
𝑇
̂⃗𝑃+
𝑊 =𝑇

𝑇
̂⃗𝑃−
𝑊 +

⎡

⎢

⎢

⎣

0
0
𝑍

⎤

⎥

⎥

⎦

(15)

which can be used alongside Eq. (14) to construct the transformation
matrix 𝑇 𝑇𝑊 . The pose of the workpiece relative to the inertial base
frame can hence be defined as:

𝐵𝑇𝑊 =𝐵 𝑇𝐸 𝐸𝑇𝑇 𝑇 𝑇𝑊 (16)

Similarly, the hole’s pose is defined as:

𝐵𝑇ℎ𝑖 =𝐵 𝑇𝑊 𝑊 𝑇ℎ𝑖 (17)

where 𝑇 is known from a CAD model of the workpiece.
375

𝑊 ℎ𝑖
Table 4
Contact pose prediction performance of the proposed CNN on an unseen testing subset

Parameter MAE Standard deviation

Angle Error (deg) 0.13 0.14
depth Z (mm) 0.3 0.3

Prior to initiating the deburring process, the deburring tool needs
to be at a specified normal pose relative to the hole. We denote this
desired pose by ℎ𝑖 �̄�𝑆 , which can be used to define a desired end-effector
pose as:

𝐵 �̄�𝐸 =𝐵 𝑇ℎ𝑖 ℎ𝑖 �̄�𝑆 (𝐸𝑇𝑆 )−1 (18)

This end-effector pose is then achieved in a similar manner to the PBVS
case explained in Section 3.6.1. The control loop of the angle-based
control is shown in Fig. 10.

4. Results and discussion

The presented multi-functional vision-based sensor and the related
algorithms were tested on the robotic setup shown in Section 2. Our
experimental evaluation focuses on two main aspects. At first, we
assess the contact pose estimation using the proposed CNN in terms
of Mean Absolute Error (MAE) for both the angle and depth estimates,
calculated as follows:

𝑀𝐴𝐸 =

∑𝑛
𝑖=1 |𝑋

𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 −𝑋𝑖

𝑎𝑐𝑡𝑢𝑎𝑙|

𝑛
(19)

where 𝑋 can be the roll 𝜃, pitch 𝜙, the square sum of roll 𝜃 and
pitch 𝜙 or the depth 𝑍. And 𝑛 is the number of samples in the testing
subset. It is important to note that the ground truth data (𝑋𝑎𝑐𝑡𝑢𝑎𝑙) used
for evaluation was taken from the same dataset which involved the
calibrated flat surface for data collection as explained in Section 3.3.

Next, we present the evaluation data for the full performance of
the system in a deburring application. The sequence of operations
to perform deburring tasks utilizing our multi-functional vision-based
sensor consists of several phases. Starting with the exploration phase
and the workpiece and hole detection phase to localize the workpiece in
6 DoF and align the end-effector with the hole. Then the orientation and
depth detection and correction phase, where the cobot achieves contact
with the workpiece and uses the proposed CNN algorithm to estimate
the contact properties in terms of orientation and depth and correct
for them. The last stage is the deburring phase, in which we perform
deburring for both sides of the workpiece. The overall sequence of
operation is depicted in Fig. 11.

The performance of the developed CNN for estimating the normality
and contact pose was tested on an unseen subset of the collected data.
In Fig. 12, we present a sample of testing images with the corresponding
ground truth and CNN predictions. Table 4 summarizes the obtained
results in terms of MAE and standard deviation of the contact pose,
across all the images in the testing subset acquired as described in
Section 3.3. Table 4 shows that our proposed vision-based tactile sensor
is capable of estimating the normal axis of the workpiece with an
MEA of 0.13◦ . Furthermore, the sensor can estimate the relative depth
between the end-effector and the workpiece with an MAE of 0.3 mm.
The maximum normality estimation error achieved on the testing set
was 1.18◦, which conforms with the perpendicularity requirements of
the aerospace manufacturing industry, and is well below the specified
error tolerance of 2◦ . The developed perception algorithms are also
suitable for real-time operation without the need for a GPU, with the
inference time running on an intel i5-10210U processor being 0.055 s,
which corresponds to a frame rate of approximately 18 fps.

In Table 5, we benchmark our results against state-of-the-art in
vision-based tactile sensing. The results clearly show that our sensor
and perception algorithms outperform prior studies in the literature
and achieve over 50% reduction in error compared to these studies.
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Fig. 11. The sequence of operation to perform deburring tasks utilizing our multi-functional vision-based sensor. In the exploration phase and the workpiece detection phase, the
sensor enables the cobot to localize the workpiece in 6-DoF. In the hole detection phase, the cobot performs circle detection for initial alignment with the hole. In the orientation
and depth detection phase, the guidance/tactile sensing gate is closed, and the robot achieves contact with the workpiece and uses CNN to estimate the contact properties in terms
of normality and depth. Then the orientation and depth are corrected, and the deburring phase starts.
In addition to quantitative advantages, our sensor is the only one that
provides exteroceptive perception in addition to proprioceptive tactile
sensing, while the capabilities of all prior work is limited to tactile
sensing only.
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We have tested and validated our sensor in the automated deburring
setup shown in Fig. 1. The cobot deburring process is performed in
two main stages: the visual workpiece/hole localization stage and the
tactile orientation/depth measurement and correction stage. At first,
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Fig. 12. The camera feedback of the tactile sensor at different random contact poses with the workpiece depicted from the testing subset. The actual benchmark roll and pitch
angle values (in radians) are shown with the predicted values from the CNN model.
Table 5
Comparison between our multi-functional vision-based sensor and other works in the literature in terms of contact pose estimation. The results show that our sensor and the
corresponding perception algorithms outperform prior work in the literature in terms of MAE of contact angles.

Studies MAE of contact angles Sensor functionality Comments

A. Gupta et al. [44] Yaw: 2.13◦ limited to proprioceptive perception The sensor only measures yaw angle

E. Pso. et al. [42] Roll: 0.33◦ Pitch: 0.28◦ limited to proprioceptive perception The sensor is used for object grasping task

N. Lepora et al. [38] Roll: 0.3◦ Pitch: 0.3◦ limited to proprioceptive perception The sensor is used for 3D surfaces pose contact
estimation with shear motion induced.

This work Roll: 0.13◦ Pitch: 0.13◦ exteroceptive and proprioceptive perception A multi-functional sensor for exteroceptive and proprioceptive
perception that meets the aircraft industry requirements
our multi-functional sensor gate is opened, and the cobot performs 6-
DoF localization of the workpiece and its holes using the ArUco fiducial.
Afterwards the cobot uses circular hole detection and PBVS for initial
positional alignment with each hole. The sensor gate is then closed as
the deburring tool is inserted in the hole. The cobot utilizes VBTS and
our trained CNN model to estimate the contact pose, and refines the
normality and depth of contact using angle-based tactile control. Fig. 13
illustrates the normality and depth refinement stages of the deburring
process. Once the tool is properly aligned with the hole, the deburring
motor is finally activated to deburr both sides of the workpiece. Fig. 14
shows the holes before and after they were deburred using our system.
The control schemes of the deburring experiments are shown in Fig. 15.

The deburring experiments were conducted on two workpieces
placed differently in the environment with ten holes in each. We
evaluate the repeatability of the overall system in terms of the counter-
sink diameter resulting from the deburring of the holes, measured using
Olympus BX51 microscope, as explained in Fig. 16. Measuring the
counter-sink diameter provides a simple and easy-to-quantify metric,
especially since the diameter and depth of a countersink are directly
correlated when the countersink angle is known. This method avoids
the need for specialized gauges or laser profilometry, making it a viable
option for assessing system performance. Table 6 presents the counter-
sink diameter for all the holes on both workpieces. The results show
a standard deviation (std) for the measured counter sink diameters
of less than 0.2 mm, which satisfies the precision requirements of
most deburring processes in the aerospace industry. In particular, the
evaluation of deburred holes in the industry is usually conducted based
on the difference between the minimum and maximum countersink
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diameters. In our experiments, we observed the minimum and maxi-
mum values to be 5.864 and 6.489 respectively, with a difference of
0.485 mm. While there is room for improving the precision in terms
of countersink diameter, these errors can arise from multiple sources
that are not within the scope of this paper and are not necessarily
measurement errors. These errors include vibrations in the deburring
motor, tool misalignment with the motor’s center of rotation, and the
lack of clamping force to stabilize the end-effector. These sources of
error can be addressed by a better end-effector design that stabilizes
the end-effector and minimizes the effects of the low stiffness in the
cobot’s joints.

In terms of assessing the positioning accuracy of our system, we note
that the radius of the holes on the workpiece is 2.55 mm+0.05

−0.05, while
the deburring tool has a radius of 2.35 mm. As such, the maximum
allowable positioning error during the deburring pin insertion process
is 0.2 mm, and any errors beyond that would cause a failure in
insertion. The success rate of the insertion process in our experiments
was 100%, which shows that the maximum positioning errors of our
system do not exceed 0.2 mm, which meets the positional accuracy
requirement of the deburring process in the aerospace industry of less
than 0.5 mm [11,12]. State-of-the-art studies that utilize exteroceptive
perception technologies to improve the machining position accuracy of
a robotic system achieved positioning accuracy ranging from 0.05 mm
to 0.3 mm [12,45,57,62]. Nonetheless, our work is the only one to
utilize a cobot for machining instead of an industrial robot. Both the
normality error and the positioning error conform with the aerospace
standards with an MAE of 0.13◦ and an accuracy of less than 0.2 mm,
respectively.
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Table 6
Counter sink diameter in mm for the holes’ deburring experiments across multiple workpieces. The counter sink diameter standard deviation complies with the insertion precision
needed of less than 0.2 mm.

Part Hole ID (mm) Mean Std Min Max

1 2 3 4 5 6 7 8 9 10

A 6.215 6.121 5.968 6.413 6.315 6.223 6.015 6.416 5.864 6.489 6.204 0.199 5.864 6.489

B 6.426 6.374 6.264 6.219 6.264 6.149 6.164 5.984 6.058 6.079 6.1981 0.132 5.984 6.426

Aggregate 6.201 0.166 5.864 6.489
Fig. 13. (a) The end-effector before the normal alignment while the sensor is pressing
on the workpiece. (b) The end-effector after the normal alignment.

Our multi-functional vision-based sensor and the corresponding
perception algorithms have the potential to be used in a wide range of
industrial applications. For instance, the sensor can be used in robotic
drilling applications, where precise alignment and normal orientation
are crucial to ensure accurate drilling and minimal material dam-
age. Our sensor addresses both of these requirements, providing high
positioning and normality measurement accuracy, which greatly en-
hances the drilling quality to meet aerospace standards. The integration
process for these applications can be done seamlessly, with minimal
changes to the current configuration by simply placing the drilling
tool beside our proposed sensor. This allows for efficient and precise
robotic drilling operation, leading to improved production quality and
efficiency. Furthermore, the sensor can also be used in robotic riveting
applications, where the same high positioning accuracy and good nor-
mality are needed to ensure a strong and reliable joint. Additionally, the
sensor can also be used in robotic grinding and polishing applications,
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Fig. 14. (a) The backside of the target workpiece before the deburring process. (b)
The backside of the target workpiece after the deburring process using the proposed
vision-based tactile sensor for normal alignment.

where precise contact properties and real-time control are required to
achieve smooth and uniform surface finishes. The sensor can also be
used in robotic assembly applications, where it can be used to ensure
precise alignment and contact between different components. These are
just a few examples of the various applications that our multi-functional
vision-based sensor can be used in. The sensor’s ability to provide real-
time feedback on contact properties, as well as its ability to use both
visual and tactile sensing, make it a versatile and powerful tool for a
wide range of industrial applications.

5. Conclusions

This paper presented the first multi-functional vision-based sensor
for precise positioning and normality control in robotic manufacturing.
Our sensor introduces a unique design that enables both exteroceptive
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Fig. 15. The control stages of the deburring experiments. (a) After performing initial alignment with the workpiece and while our multi-functional sensor gate is opened, the
robotic deburring experiment starts by performing hole detection to precisely localize the hole by position-based visual servoing. (b) In this stage, the multi-functional sensor gate
is closed and Peg-in-hole is performed. (c) In this stage the orientation is precisely corrected and the deburring tool pose is controlled using the angle-based tactile control scheme.
(d) The last stage guarantees precise depth control for precise deburring of both sides of the workpiece.
Fig. 16. The counter sink diameter measurement used to assess the precision of the
deburring process.

and proprioceptive perception using a single imaging sensor. Exterocep-
tive perception is used to position the robotic end-effector relative to
an arbitrarily placed workpiece with sub-millimeter precision. As for
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proprioceptive perception, our sensor utilizes a low-cost deformable
surface and Convolutional Neural Networks to estimate and adjust
the contact pose between the end-effector and the workpiece. We
also introduced the visual and tactile control laws that facilitate the
utilization of our sensor in robotic manufacturing scenarios.

We have validated our sensor experimentally for a deburring ap-
plication using a cobot. The use of a cobot enables the system to be
deployed directly in the production line alongside human technicians
working on different machining tasks. Our tests verify that the pro-
posed vision-based sensor provides the high precision required in the
aerospace manufacturing industry for both positioning and normality
control. Quantitative results show an average normality error of 0.13◦,
and positioning errors below 0.2 mm, both of which are within the
allowed error tolerances in the aerospace industry. Therefore, our
multi-functional sensor establishes a new paradigm for perception sys-
tems in robotic manufacturing, as it enhances current methods in terms
of precision, cost, weight, size, and low instrumentation and wiring
requirements. The ability to provide both positioning and normality
measurements using a single modality has the potential to accelerate
the development of autonomous manufacturing systems, as opposed to
traditional practices of developing an independent sensing sub-system
for each of these functionalities. Furthermore, the extension of VBTS
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capabilities to perceive external environments in addition to providing
tactile measurements would lead to higher adoption of VBTS within the
robotics community, especially since most robotic applications require
a combination of visual and tactile perception.

While our analysis and experiments in this paper validate the sensor
for real-world applications and prove that the novel sensor meets the
specifications of the aerospace industry, there is room for improvement
and research to enhance the sensor and increase its range of functions.
One possible improvement is to enhance the optical system to augment
its robustness to variations in lighting conditions. For instance, when
the robot is performing exteroceptive perception in low-light condi-
tions, conventional frame-based cameras suffer from motion blur and
high latency due to increased exposure timing. On the other hand,
when the guidance/tactile sensing gate is closed for proprioceptive
perception, minimal external light enters the sensor, which adds the
requirement of an internal lighting source. Other areas of improvement
include extending the lifetime of the elastic tactile interface to prevent
plastic deformation over long-term operation. We will address those
limitations in future work, which would include the following:

• Enhance the robustness of lighting conditions and eliminate the
need for an internal lighting source by using neuromorphic vision.

• Extend the functions of the vision-based tactile sensor by adding
vibration and force/torque estimation capabilities, which might
require higher frame rate camera or neuromorphic camera.

• Optimize the tactile sensor material and design for enhanced
measurement range, sensitivity, and sensor lifetime and explore
miniaturization to assess the impact on accuracy.

• Optimize the sensor design in terms of weight and size.
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