Chip formation and orthogonal cutting optimisation of unidirectional carbon fibre composites

Journal article


Hassanin, H., Abena, A., Soo, L., Ataya, S., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ahmed, M. and Essa, K. 2023. Chip formation and orthogonal cutting optimisation of unidirectional carbon fibre composites. Polymers. 15 (8), p. 1897. https://doi.org/10.3390/polym15081897
AuthorsHassanin, H., Abena, A., Soo, L., Ataya, S., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ahmed, M. and Essa, K.
Abstract

This study presents a thorough experimental investigation utilising the design of experiments and analysis of variance (ANOVA) to examine the impact of machining process parameters on chip formation mechanisms, machining forces, workpiece surface integrity, and damage resulting from the orthogonal cutting of unidirectional CFRP. The study identified the mechanisms behind chip formation and found it to significantly impact the workpiece orientation of fibre and the tool’s cutting angle, resulting in increased fibre bounceback at larger fibre orientation angles and when using smaller rake angle tools. Increasing the depth of cut and fibre orientation angle results in an increased damage depth, while using higher rake angles reduces it. An analytical model based on response surface analysis for predicting machining forces, damage, surface roughness, and bounceback was also developed. The ANOVA results indicate that fibre orientation is the most significant factor in machining CFRP, while cutting speed is insignificant. Increasing fibre orientation angle and depth leads to deeper damage, while larger tool rake angles re-duce damage. Machining workpieces with 0° fibre orientation angle results in the least subsurface damage, and surface roughness is unaffected by the tool rake angle for fibre orientations between 0° to 90° but worsens for angles greater than 90°. Optimisation of cutting parameters were subsequently optimised to improve machined workpiece surface quality and reduce forces. The experimental results showed that negative rake angle and cutting at moderately low speeds (366 mm/min) is the optimal conditions for machining laminates with a fibre angle of θ = 45°. On the other hand, for composite materials with fibre angles of θ = 90° and θ = 135°, it is recommended to use a high positive rake angle and cutting speeds.

KeywordsUD-CFRP; Orthogonal cutting; Bounce back; Cutting edge; Chip formation
Year2023
JournalPolymers
Journal citation15 (8), p. 1897
PublisherMDPI
Digital Object Identifier (DOI)https://doi.org/10.3390/polym15081897
Official URLhttps://www.mdpi.com/2073-4360/15/8/1897
Publication dates
Online15 Apr 2023
Publication process dates
Accepted10 Apr 2023
Deposited17 Apr 2023
Publisher's version
License
Output statusPublished
References

1. Sun, G.; Chen, D.; Zhu, G.; Li, Q. Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook. Thin-Walled Struct. 2022, 35, 108760.
2. Galatas, A.; Hassanin, H.; Zweiri, Y.; Seneviratne, L. Additive manufactured sandwich composite/ABS parts for unmanned aerial vehicle applications. Polymers 2018, 10, 1262.
3. Muflikhun, M.; Yokozeki, T. Steel plate cold commercial—Carbon fiber reinforced plastics hybrid laminates for automotive applications: Curing perspective with thermal residual effect. J. Mater. Res. Technol. 2021, 14, 2700–2714.
4. Abbood, I.; Odaa, S.; Hassan, K.; Jasim, M. Properties evaluation of fiber reinforced polymers and their constituent materials used in structures—A review. Mater. Today 2021, 43, 1003–1008.
5. Wang, D.; Ramulu, M.; Arola, D. Orthogonal cutting mechanisms of graphite/epoxy composite. Part I: Unidirectional laminate. Int. J. Mach. Tools Manuf. 1995, 172, 1623–1638.
6. Wang, X.; Zhang, L. An experiemental investigation into the orthogonal cutting of uni-directional fibre reinforced plastics. Int. J. Mach. Tools Manuf. 2003, 43, 1015–1022.
7. Bhatnagar, N.; Ramakrishnan, N.; Naik, N.; Komanduri, R. On the machining of fiber reinforced plastic (FRP) composite laminates. Int. J. Mach. Tools Manuf. 1995, 35, 701–716.
8. Kaneeda, T. CFRP cutting mechanism. Trans. N. Am. Manuf. Res. Inst. SME 1991, 19, 216–221.
9. Calzada, K.A.; Kapoor, S.G.; Vor, R.E.D.; Samuel, J.; Srivastava, A.K. Modeling and in-terpretation of fiber orientation-based failure mechanisms in machining of carbon fi-ber-reinforced composites. J. Manuf. Process. 2012, 14, 141–149.
10. Zitoune, R.; Collombet, F.; Lachaud, F.; Piquet, R.; Pasquet, P. Experiment calculation comparison of the cutting conditions representative of the long fiber composite drilling phase. Compos. Sci. Technol. 2005, 65, 455–466.
11. Ramulu, M. Machining and surface integrity of fibre-reinforced plastic composites. Sad-hana 1997, 22, 449–472.
12. Pwu, H.; Hocheng, H. Chip formation model of cutting fiber-reinforced plastics perpen-dicular to fiber axis. J. Manuf. Sci. E 1998, 120, 192–196.
13. Sheikh-Ahmad, J.Y. Machining of Polymer Composites; Springer Science + Business Media: Berlin/Heidelberg, Germany, 2009.
14. Koplev, A.; Lystrup, A.; Vorm, T. The cutting process, chip, and cutting forces in ma-chining CFRP. Composites 1983, 14, 371–376.
15. Bhatnagar, N.; Nayak, D.; Singh, I.; Chouhan, H.; Mahajan, P. Determination of ma-chining-induced damage characteristic of fiber reinforced plastic composite laminates. Mater. Manuf. Process. 2004, 19, 1009–1023.
16. Iliescu, D.; Gehin, D.; Iordanoff, I.; Girot, F.; Guetiérrez, M. A discrete element method for the simulation of CFRP cutting. Compos. Sci. Technol. 2010, 70, 73–80.
17. Dandekar, C.; Shin, Y. Multiphase finite element modeling of machining unidirectional composites: Prediction of debonding and fiber damage. J. Manuf. Sci. E 2008, 130, 1–12.
18. Li, H.; Wang, J.; Wu, C.; Zhao, Y.; Xu, J.; Liu, X.; Zhu, W. Damage behaviors of unidi-rectional CFRP in orthogonal cutting: A comparison between single- and multiple-pass strategies. Compos. B Eng. 2020, 185, 107774.
19. T800s Data Sheet, N/A; Toray Composite Materials America Inc.: Tacoma, WA, USA.
20. Hexcel, HexPly® M21 Epoxy Matrix (180 °C/356 °F Curing Matrix) Product Data, N/A. Available online: (accessed on).
21. Rao, G.V.G.; Mahajan, P.; Bhatnagar, N. Three-dimensional macro-mechanical finite element model for machining of unidirectional-fiber reinforced polymer composites. Mater. Sci. Eng. A 2008, 498, 142–149.
22. Kahwash, F.; Shyha, I.; Maheri, A. Machining unidirectional composites using sin-gle-point tools: Analysis of cutting forces, chip formation and surface integrity. Procedia Eng. 2015, 132, 569–576.
23. Li, H.; Qin, X.; He, G.; Gin, Y.; Sun, D.; Prince, M. Investigation of chip formation and fracture toughness in orthogonal cutting of UD-CFRP. Int. Adv. Manuf. Technol. 2016, 82, 1079–1088.
24. Voß, R.; Henerichs, M.; Kuster, F.; Wegener, K. Chip root analysis after machining carbon fiber reinforced plastics (CFRP) at different fiber orientations. Procedia CIRP 2014, 14, 217–222.
25. Parida, A.; Routara, B.; Bhuyan, R. Surface roughness model and parametric optimisation in machining of GFRP composite: Taguchi and Response surface methodology approach. Mater. Today Proc. 2015, 2, 3065–3074.
26. Tsao, C.; Chiu, Y. Evaluation of drilling parameters on thrust force in drilling carbon fiber reinforced plastic (CFRP) composite laminates using compound core-special drills. Int. J. Mach. Tools Manuf. 2011, 51, 740–744.
27. Essa, K.; Hartley, P. Optimisation of conventional spinning process parameters by means of numerical simulation and statistical analysis. Proc. IMechE Part B J. Eng. Manuf. 2010, 224, 1691–1705.

Permalink -

https://repository.canterbury.ac.uk/item/945w7/chip-formation-and-orthogonal-cutting-optimisation-of-unidirectional-carbon-fibre-composites

Download files


Publisher's version
polymers-15-01897.pdf
License: CC BY 4.0

  • 97
    total views
  • 83
    total downloads
  • 3
    views this month
  • 0
    downloads this month

Export as

Related outputs

Zirconia-calcium silicate bioactive composites for dental applications using DLP additive manufacturing
Binobaid, A., De Lisi, M., Camilleri, J., Hassanin, H. and Essa, K. 2025. Zirconia-calcium silicate bioactive composites for dental applications using DLP additive manufacturing. Bioprinting. 45, p. e00377. https://doi.org/10.1016/j.bprint.2024.e00377
Study on agricultural waste utilization in sustainable particleboard production
Okeke, F., Ahmed, A. and Hassanin, H. 2024. Study on agricultural waste utilization in sustainable particleboard production. E3S Web of Conferences. 563. https://doi.org/10.1051/e3sconf/202456302007
Adaptive SOC Estimation for Lithium-Ion Batteries Using Cluster-Based Deep Learning Models Across Diverse Temperatures
Al-Alawi, Mohammed Khalifa, Cugley, James, Hassanin, Hany and Jaddoa, Ali 2024. Adaptive SOC Estimation for Lithium-Ion Batteries Using Cluster-Based Deep Learning Models Across Diverse Temperatures. 2024 IEEE International Conference on Environment and Electrical Engineering and 2024 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). https://doi.org/10.1109/eeeic/icpseurope61470.2024.10751169
A review of corncob-based building materials as a sustainable solution for the building and construction industry
Okeke, F., Ahmed, A., Imam, A. and Hassanin, H. 2024. A review of corncob-based building materials as a sustainable solution for the building and construction industry. Hybrid Advances. 6 (100269), pp. 1-16. https://doi.org/10.1016/j.hybadv.2024.100269
A novel enhanced SOC estimation method for lithium-ion battery cells using cluster-based LSTM models and centroid proximity selection
Al-Alawi, M., Jaddoa, A., Cugley, J. and Hassanin, H. 2024. A novel enhanced SOC estimation method for lithium-ion battery cells using cluster-based LSTM models and centroid proximity selection. Journal of Energy Storage. 97 (B), p. 112866. https://doi.org/10.1016/j.est.2024.112866
Assessment of compressive strength performance of corn cob ash blended concrete: a review
Okeke, F., Ahmed, A., Imam, A. and Hassanin, H. 2024. Assessment of compressive strength performance of corn cob ash blended concrete: a review. https://doi.org/10.18552/2024/SCMT/606
Tailoring 3D star-shaped auxetic structures for enhanced mechanical performance
Hassanin, H., Wang, Y., A. Alsaleh, N., Djuansjah, J., El-Sayed, K. and Essa, K. 2024. Tailoring 3D star-shaped auxetic structures for enhanced mechanical performance. Aerospace. 11 (6), p. 428. https://doi.org/10.3390/aerospace11060428
Virtual prototyping of vision-based tactile sensors design for robotic-assisted precision machining
Zaid, I., Sajwani, H., Halwani, M., Hassanin, H., Ayyad, A., AbuAssi, A., Almaskari, F., Abdul Samad, Y, Abusafieh, A. and Zweiri, Y. 2024. Virtual prototyping of vision-based tactile sensors design for robotic-assisted precision machining. Sensors and Actuators A: Physical. 374 (115469). https://doi.org/10.1016/j.sna.2024.115469
Designing lightweight 3D-printable bioinspired structures for enhanced compression and energy absorption properties
Harish, A., A. Alsaleh, N., Ahmadein, M., Elfar, A., Djuansjah, J., Hassanin, H., El-Sayed, M. and Essa, K. 2024. Designing lightweight 3D-printable bioinspired structures for enhanced compression and energy absorption properties. Polymers. 16 (6), p. 729. https://doi.org/10.3390/polym16060729
A novel vision-based multi-functional sensor for normality and position measurements in precise robotic manufacturing
Halwani, M., Ayyad, A., AbuAssi, L., Abdulrahman, Y., Almaskari, F., Hassanin, H., Abusafieh, A. and Zweiri, Y. 2024. A novel vision-based multi-functional sensor for normality and position measurements in precise robotic manufacturing. Precision Engineering. 88, pp. 367-381. https://doi.org/10.1016/j.precisioneng.2024.02.015
Optimisation of a novel hot air contactless single incremental point forming of polymers
Almadani, M., Guner, A., Hassanin, H. and Essa, K. 2024. Optimisation of a novel hot air contactless single incremental point forming of polymers. Journal of Manufacturing Processes. 117, pp. 302-314. https://doi.org/10.1016/j.jmapro.2024.02.042
Advancing safety and efficiency in critical infrastructure with a novel SOC estimation for battery storage systems: A focus on second life batteries
Al-Alawi, M., Cugley, J., Jaddoa, A. and Hassanin, H. 2024. Advancing safety and efficiency in critical infrastructure with a novel SOC estimation for battery storage systems: A focus on second life batteries.
Review on engineering of bone scaffolds using conventional and additive manufacturing technologies
Mohammed, A., Jiménez, Amaia, Bidare, Prveen, Elshaer, Amr, Memic, Adnan, Hassanin, Hany and Essa, Khamis 2024. Review on engineering of bone scaffolds using conventional and additive manufacturing technologies. 3D Printing and Additive Manufacturing. 11 (4), pp. 1418-1440. https://doi.org/10.1089/3dp.2022.0360
Contactless single point incremental forming: Experimental and numerical simulation
Almadani, M., Guner, A., Hassanin, H., De Lisi, Michele. and Essa, K. 2023. Contactless single point incremental forming: Experimental and numerical simulation. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-023-12401-1
Hot-air contactless single-point incremental forming
Almadani, M., Guner, A., Hassanin, H. and Essa, K. 2023. Hot-air contactless single-point incremental forming. Journal of Manufacturing and Materials Processing. 7 (5), p. 179. https://doi.org/10.3390/jmmp7050179
Optimising surface roughness and density in titanium fabrication via laser powder bed fusion
Hassanin, H., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ataya, S., Ahmed, M. and Essa, K. 2023. Optimising surface roughness and density in titanium fabrication via laser powder bed fusion. Micromachines. 14 (8), p. 1642. https://doi.org/10.3390/mi14081642
Hybrid finite element–smoothed particle hydrodynamics modelling for optimizing cutting parameters in CFRP composites
Abena, A., Ataya, S., Hassanin, H., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ahmed, M. and Essa, K. 2023. Hybrid finite element–smoothed particle hydrodynamics modelling for optimizing cutting parameters in CFRP composites. Polymers. 15 (13), p. 2789. https://doi.org/10.3390/polym15132789
Embracing sustainable farming: Unleashing the circular economy potential of second-life EV batteries in agricultural applications
Al-Alawi, M., Cugley, J. and Hassanin, H. 2023. Embracing sustainable farming: Unleashing the circular economy potential of second-life EV batteries in agricultural applications.
Entrained defects and mechanical properties of aluminium castings
El-Sayed, M., Essa, K. and Hassanin, H. 2023. Entrained defects and mechanical properties of aluminium castings.
Preparation of polylactic acid/calcium peroxide compo-site filaments for fused deposition modelling
Mohammed, A., Kovacev , N., Elshaer, A., Melaibari, A., Iqbal, J., Hassanin, H., Essa, K. and Memić, A. 2023. Preparation of polylactic acid/calcium peroxide compo-site filaments for fused deposition modelling. Polymers. 15 (9), p. 2229. https://doi.org/10.3390/polym15092229
Non-destructive disassembly of interference fit under wear conditions for sustainable remanufacturing
Yeung, H., Ataya, S., Hassanin, H., El-Sayed, M., Ahmadein, M., A. Alsaleh, N., Ahmed, M. and Essa, K. 2023. Non-destructive disassembly of interference fit under wear conditions for sustainable remanufacturing. Machines. 11 (5), p. 538. https://doi.org/10.3390/machines11050538
Fabrication and characterization of oxygen-generating polylactic acid/calcium peroxide composite filaments for bone scaffolds
Mohammed, A., Saeed, A., Elshaer, A., Melaibari, A., Memić, A., Hassanin, H. and Essa, K. 2023. Fabrication and characterization of oxygen-generating polylactic acid/calcium peroxide composite filaments for bone scaffolds. Pharmaceuticals. 16 (4), p. 627. https://doi.org/10.3390/ph16040627
Using second-life batteries and solar power to help farms become energy efficient.
Al-Alawi, M., Cugley, J. and Hassanin, H. 2023. Using second-life batteries and solar power to help farms become energy efficient. Canterbury Christ Church University.
Fabrication and Optimisation of Ti-6Al-4V Lattice-Structured Total Shoulder Implants Using Laser Additive Manufacturing
Bittredge, Oliver, Hassanin, H., El-Sayed, M., Eldessouky, Hossam Mohamed, A. Alsaleh, N., Alrasheedi, Nashmi H., Essa, K. and Ahmadein, M. 2022. Fabrication and Optimisation of Ti-6Al-4V Lattice-Structured Total Shoulder Implants Using Laser Additive Manufacturing. Materials (Basel, Switzerland). 15 (9), p. e3095. https://doi.org/10.3390/ma15093095
Elastomer-based visuotactile sensor for normality of robotic manufacturing systems
Hassanin, H., Zaid, I., Halwani, M., Ayyad, A., Imam, A., Almaskari, F. and Zweiri, Y. 2022. Elastomer-based visuotactile sensor for normality of robotic manufacturing systems. Polymers. 14 (23), p. 5097. https://doi.org/10.3390/polym14235097
Techno-economic feasibility of retired electric-vehicle batteries repurpose/reuse in second-life applications: A systematic review
Hassanin, H., Al-Alawi, M. and Cugley, J. 2022. Techno-economic feasibility of retired electric-vehicle batteries repurpose/reuse in second-life applications: A systematic review. Energy and Climate Change. 3 (100086). https://doi.org/10.1016/j.egycc.2022.100086
Planning, operation, and design of market-based virtual power plant considering uncertainty
Hassanin, H., Ullah, Z., Arshad, Cugley, J. and Al-Alawi, M. 2022. Planning, operation, and design of market-based virtual power plant considering uncertainty. Energies. 19 (15), p. 7290. https://doi.org/10.3390/en15197290
The epistemic insight digest: Issue : Autumn 2022
Gordon, A., Shalet, D., Simpson, S., Hassanin, H., Lawson, F., Lawson, M., Litchfield, A., Thomas, C., Canetta, E., Manley, K. and Choong, C. Shalet, D. (ed.) 2022. The epistemic insight digest: Issue : Autumn 2022. Canterbury Canterbury Christ Church University.
Modeling, optimization, and analysis of a virtual power plant demand response mechanism for the internal electricity market considering the uncertainty of renewable energy sources
Ullah, Z., Arshad and Hassanin, H. 2022. Modeling, optimization, and analysis of a virtual power plant demand response mechanism for the internal electricity market considering the uncertainty of renewable energy sources. Energies. 15 (14), p. 5296. https://doi.org/doi.org/10.3390/en15145296
Interdisciplinary engineering education - essential for the 21st century
Gordon, A., Simpson, S. and Hassanin, H. 2022. Interdisciplinary engineering education - essential for the 21st century.
Multipoint forming using hole-type rubber punch
Hassanin, H., Tolipov, A., El-Sayed, M., Eldessouky, H., A. Alsaleh, N., Alfozan, A., Essa, K. and Ahmadein, M. 2022. Multipoint forming using hole-type rubber punch. Metals. 12 (3), p. 491. https://doi.org/10.3390/met12030491
Influence of bifilm defects generated during mould filling on the tensile properties of Al−Si−Mg cast alloys
El-Sayed, M., Essa, K. and Hassanin, H. 2022. Influence of bifilm defects generated during mould filling on the tensile properties of Al−Si−Mg cast alloys. Metals. 12 (1), p. e160. https://doi.org/10.3390/met12010160
Multistage Tool Path Optimisation of Single-Point Incremental Forming Process
Yan, Zhou, Hassanin, H., El-Sayed, M., Eldessouky, Hossam Mohamed, Djuansjah, Joy Rizki Pangestu, A. Alsaleh, N., Essa, K. and Ahmadein, M. 2021. Multistage Tool Path Optimisation of Single-Point Incremental Forming Process. Materials (Basel, Switzerland). 14 (22), p. e6794. https://doi.org/10.3390/ma14226794
Effect of runner thickness and hydrogen content on the mechanical properties of A356 alloy castings
El-Sayed, M., Essa, K. and Hassanin, H. 2021. Effect of runner thickness and hydrogen content on the mechanical properties of A356 alloy castings . International Journal of Metalcasting. https://doi.org/10.1007/s40962-021-00753-x
Parts design and process optimization
Hassanin, Hany, Bidare, Prveen, Zweiri, Yahya and Essa, Khamis 2021. Parts design and process optimization. in: Salunkhe, S., Hussein, H. and Davim, J. (ed.) Applications of Artificial Intelligence in Additive Manufacturing USA IGI Global. pp. 25-49
Micro-additive manufacturing technologies of three-dimensional MEMS
Hassanin, H., Sheikholeslami, G., Pooya, S. and Ishaq, R. 2021. Micro-additive manufacturing technologies of three-dimensional MEMS . Advanced Engineering Materials. https://doi.org/10.1002/adem.202100422
Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications
Fan , W., Chen, Y., Li, J., Sun, Y., Feng, F., Hassanin, H. and Sareh, P. 2021. Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications. Structures. 33, pp. 3954-3963. https://doi.org/10.1016/j.istruc.2021.06.110
Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: A review
Bidare, P., Jiménez, A., Hassanin, H. and Essa, K. 2021. Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: A review. Advances in Manufacturing. https://doi.org/10.1007/s40436-021-00365-y
Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approaches
Hassanin, H., Zweiri, Y., Finet, L., Essa, K., Qiu, C. and Attallah, M. 2021. Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approaches. Materials. 14 (8), p. 2056. https://doi.org/10.3390/ma14082056
3DP printing of oral solid formulations: a systematic review
Brambilla, C., Okafor-Muo, O., Hassanin, H. and ElShaer, A. 2021. 3DP printing of oral solid formulations: a systematic review. Pharmaceutics. 13 (3), p. 358. https://doi.org/10.3390/pharmaceutics13030358
Powder-based laser hybrid additive manufacturing of metals: A review
Hassanin, H. 2021. Powder-based laser hybrid additive manufacturing of metals: A review. The International Journal of Advanced Manufacturing Technology.
Micro-fabrication of ceramics: additive manufacturing and conventional technologies
Hassanin, H., Essa, K., Elshaer, A., Imbaby, M. and El-Sayed, T. E. 2021. Micro-fabrication of ceramics: additive manufacturing and conventional technologies. Journal of Advanced Ceramics. 10, pp. 1-27. https://doi.org/10.1007/s40145-020-0422-5
4D Printing of origami structures for minimally invasive surgeries using functional scaffold
Langford, T, Mohammed, A., Essa, K., Elshaer, A. and Hassanin, H. 2020. 4D Printing of origami structures for minimally invasive surgeries using functional scaffold. Applied Sciences. 11 (1), p. 332. https://doi.org/10.3390/app11010332
Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile
Hassanin, H., Mohammed, M., Abdel-Wahab, A. and Essa, K 2020. Reconfigurable multipoint forming using waffle-type elastic cushion and variable loading profile. Materials.
3D printing of solid oral dosage forms: numerous challenges with unique opportunities
Hassanin, H. 2020. 3D printing of solid oral dosage forms: numerous challenges with unique opportunities. Journal of Pharmaceutical Sciences. https://doi.org/10.1016/j.xphs.2020.08.029
Design optimisation of additively manufactured titanium lattice structures for biomedical implants
El-Sayed, M.A., Essa, K., Ghazy, M. and Hassanin, H. 2020. Design optimisation of additively manufactured titanium lattice structures for biomedical implants. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-020-05982-8
4D Printing of NiTi auxetic structure with improved ballistic performance
Hassanin, H., Abena, A., Elsayed, M.A. and Essa, K. 2020. 4D Printing of NiTi auxetic structure with improved ballistic performance. Micromachines. 11 (8), p. 745. https://doi.org/doi.org/10.3390/mi11080745