References | 1. Kang, D.; Park, S.; Son, Y.; Yeon, S.; Kim, S.H.; Kim, I. Multi-lattice inner structures for high-strength and light-weight in metal selective laser melting process. Materials & Design 2019, 175, 107786. 2. Iwase, A.; Hori, F. Modification of Lattice Structures and Mechanical Properties of Metallic Materials by Energetic Ion Irradiation and Subsequent Thermal Treatments. Quantum Beam Science 2020, 4, 17. 3. Cosma, C.; Kessler, J.; Gebhardt, A.; Campbell, I.; Balc, N. Improving the Mechanical Strength of Dental Applications and Lattice Structures SLM Processed. Materials 2020, 13, 905. 4. Sienkiewicz, J.; Płatek, P.; Jiang, F.; Sun, X.; Rusinek, A. Investigations on the Mechanical Response of Gradient Lattice Structures Manufactured via SLM. Metals 2020, 10, 213. 5. Maconachie, T.; Leary, M.; Lozanovski, B.; Zhang, X.; Qian, M.; Faruque, O.; Brandt, M. SLM lattice structures: Properties, performance, applications and challenges. Materials & Design 2019, 108137. 6. Maskery, I.; Aremu, A.; Parry, L.; Wildman, R.; Tuck, C.; Ashcroft, I. Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading. Materials & Design 2018, 155, 220-232. 7. Narkhede, S.; Sur, A.; Darvekar, S. Applications, manufacturing and thermal characteristics of micro-lattice structures: Current state of the art. Engineering Journal 2019, 23, 419-431, doi:10.4186/ej.2019.23.6.419. 8. Rashed, M.; Ashraf, M.; Mines, R.; Hazell, P.J. Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications. Materials & Design 2016, 95, 518-533. 9. Maldovan, M.; Ullal, C.K.; Jang, J.-H.; Thomas, E.L. Sub-Micrometer Scale Periodic Porous Cellular Structures: Microframes Prepared by Holographic Interference Lithography. Advanced Materials 2007, 19, 3809-3813, doi:10.1002/adma.200700811. 10. Zhu, Z.; Hassanin, H.; Jiang, K. A soft moulding process for manufacture of net-shape ceramic microcomponents. The International Journal of Advanced Manufacturing Technology 2010, 47, 147-152, doi:10.1007/s00170-008-1864-z. 11. Hassanin, H.; Jiang, K. Multiple replication of thick PDMS micropatterns using surfactants as release agents. Microelectronic Engineering 2011, 88, 3275-3277, doi:https://doi.org/10.1016/j.mee.2011.06.027. 12. Hassanin, H.; Jiang, K. Fabrication of Al2O3/SiC Composite Microcomponents using Non-aqueous Suspension. Advanced Engineering Materials 2009, 11, 101-105, doi:10.1002/adem.200800158. 13. Hassanin, H.; Jiang, K. Net shape manufacturing of ceramic micro parts with tailored graded layers. Journal of Micromechanics and Microengineering 2013, 24, 015018, doi:10.1088/0960-1317/24/1/015018. 14. Hassanin, H.; Jiang, K. Fabrication and characterization of stabilised zirconia micro parts via slip casting and soft moulding. Scripta Materialia 2013, 69, 433-436, doi:https://doi.org/10.1016/j.scriptamat.2013.05.004. 15. Hassanin, H.; Jiang, K. Functionally graded microceramic components. Microelectronic Engineering 2010, 87, 1610-1613, doi:https://doi.org/10.1016/j.mee.2009.10.044. 16. Hassanin, H.; Jiang, K. Alumina composite suspension preparation for softlithography microfabrication. Microelectronic Engineering 2009, 86, 929-932, doi:https://doi.org/10.1016/j.mee.2008.12.067. 17. Hassanin, H.; Jiang, K. Optimized process for the fabrication of zirconia micro parts. Microelectronic Engineering 2010, 87, 1617-1619, doi:https://doi.org/10.1016/j.mee.2009.10.037. 18. Essa, K.; Modica, F.; Imbaby, M.; El-Sayed, M.A.; ElShaer, A.; Jiang, K.; Hassanin, H. Manufacturing of metallic micro-components using hybrid soft lithography and micro-electrical discharge machining. The International Journal of Advanced Manufacturing Technology 2017, 91, 445-452. 19. Hassanin, H.; Essa, K.; Qiu, C.; Abdelhafeez Ali, M.; Adkins Nicholas, J.E.; Attallah Moataz, M. Net-shape manufacturing using hybrid selective laser melting/hot isostatic pressing. Rapid Prototyping Journal 2017, 23, 720-726, doi:10.1108/RPJ-02-2016-0019. 20. Qiu, C.; Adkins, N.J.E.; Hassanin, H.; Attallah, M.M.; Essa, K. In-situ shelling via selective laser melting: Modelling and microstructural characterisation. Materials & Design 2015, 87, 845-853, doi:https://doi.org/10.1016/j.matdes.2015.08.091. 21. Hassanin, H.; Finet, L.; Cox, S.C.; Jamshidi, P.; Grover, L.M.; Shepherd, D.E.T.; Addison, O.; Attallah, M.M. Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channels. Additive Manufacturing 2018, 20, 144-155, doi:https://doi.org/10.1016/j.addma.2018.01.005. 22. Klippstein, H.; Hassanin, H.; Diaz De Cerio Sanchez, A.; Zweiri, Y.; Seneviratne, L. Additive Manufacturing of Porous Structures for Unmanned Aerial Vehicles Applications. Advanced Engineering Materials 2018, 20, 1800290, doi:10.1002/adem.201800290. 23. Sabouri, A.; Yetisen, A.K.; Sadigzade, R.; Hassanin, H.; Essa, K.; Butt, H. Three-Dimensional Microstructured Lattices for Oil Sensing. Energy & Fuels 2017, 31, 2524-2529, doi:10.1021/acs.energyfuels.6b02850. 24. Klippstein, H.; Diaz De Cerio Sanchez, A.; Hassanin, H.; Zweiri, Y.; Seneviratne, L. Fused Deposition Modeling for Unmanned Aerial Vehicles (UAVs): A Review. Advanced Engineering Materials 2018, 20, 1700552, doi:10.1002/adem.201700552. 25. Galatas, A.; Hassanin, H.; Zweiri, Y.; Seneviratne, L. Additive Manufactured Sandwich Composite/ABS Parts for Unmanned Aerial Vehicle Applications. Polymers (Basel) 2018, 10, 1262. 26. Tan, C.; Li, S.; Essa, K.; Jamshidi, P.; Zhou, K.; Ma, W.; Attallah, M.M. Laser Powder Bed Fusion of Ti-rich TiNi lattice structures: Process optimisation, geometrical integrity, and phase transformations. International Journal of Machine Tools and Manufacture 2019, 141, 19-29, doi:https://doi.org/10.1016/j.ijmachtools.2019.04.002. 27. Hassanin, H.; Abena, A.; Elsayed, M.A.; Essa, K. 4D Printing of NiTi Auxetic Structure with Improved Ballistic Performance. Micromachines 2020, 11, 745. 28. Penchev, P.; Bhaduri, D.; Carter, L.; Mehmeti, A.; Essa, K.; Dimov, S.; Adkins, N.J.E.; Maillol, N.; Bajolet, J.; Maurath, J., et al. System-level integration tools for laser-based powder bed fusion enabled process chains. Journal of Manufacturing Systems 2019, 50, 87-102, doi:https://doi.org/10.1016/j.jmsy.2018.12.003. 29. Li, Y.; Feng, Z.; Hao, L.; Huang, L.; Xin, C.; Wang, Y.; Bilotti, E.; Essa, K.; Zhang, H.; Li, Z., et al. A Review on Functionally Graded Materials and Structures via Additive Manufacturing: From Multi-Scale Design to Versatile Functional Properties. Advanced Materials Technologies 2020, 5, 1900981, doi:10.1002/admt.201900981. 30. Li, Y.; Feng, Z.; Huang, L.; Essa, K.; Bilotti, E.; Zhang, H.; Peijs, T.; Hao, L. Additive manufacturing high performance graphene-based composites: A review. Composites Part A: Applied Science and Manufacturing 2019, 124, 105483, doi:https://doi.org/10.1016/j.compositesa.2019.105483. 31. Rehme, O.; Emmelmann, C. Rapid manufacturing of lattice structures with selective laser melting; SPIE: 2006; Vol. 6107. 32. Challis, V.J.; Xu, X.; Zhang, L.C.; Roberts, A.P.; Grotowski, J.F.; Sercombe, T.B. High specific strength and stiffness structures produced using selective laser melting. Materials & Design 2014, 63, 783-788. 33. Elsayed, M.; Ghazy, M.; Youssef, Y.; Essa, K. Optimization of SLM process parameters for Ti6Al4V medical implants. Rapid Prototyping Journal 2019, 25, 433-447. 34. Hassanin, H.; Al-Kinani, A.A.; ElShaer, A.; Polycarpou, E.; El-Sayed, M.A.; Essa, K. Stainless steel with tailored porosity using canister-free hot isostatic pressing for improved osseointegration implants. Journal of Materials Chemistry B 2017, 5, 9384-9394. 35. Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; Qian, M.; Brandt, M.; Xie, Y.M. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 2016, 83, 127-141. 36. Sing, S.L.; Yeong, W.Y.; Wiria, F.E.; Tay, B. Characterization of titanium lattice structures fabricated by selective laser melting using an adapted compressive test method. Experimental Mechanics 2016, 56, 735-748. 37. Brenne, F.; Niendorf, T.; Maier, H. Additively manufactured cellular structures: Impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load. Journal of Materials Processing Technology 2013, 213, 1558-1564. 38. Salem, H.; Carter, L.; Attallah, M.; Salem, H. Influence of processing parameters on internal porosity and types of defects formed in Ti6Al4V lattice structure fabricated by selective laser melting. Materials Science and Engineering: A 2019, 767, 138387. 39. Wauthle, R.; Vrancken, B.; Beynaerts, B.; Jorissen, K.; Schrooten, J.; Kruth, J.-P.; Van Humbeeck, J. Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Additive Manufacturing 2015, 5, 77-84. 40. Mazur, M.; Leary, M.; Sun, S.; Vcelka, M.; Shidid, D.; Brandt, M. Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM). The International Journal of Advanced Manufacturing Technology 2016, 84, 1391-1411. 41. Sing, S.L.; Wiria, F.E.; Yeong, W.Y. Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior. Robotics and Computer-Integrated Manufacturing 2018, 49, 170-180. 42. Hader, R.; Park, S.H. Slope-rotatable central composite designs. Technometrics 1978, 20, 413-417. 43. Tamburrino, F.; Graziosi, S.; Bordegoni, M. The design process of additively manufactured mesoscale lattice structures: A review. Journal of Computing and Information Science in Engineering 2018, 18, doi:10.1115/1.4040131. 44. Essa, K.; Hassanin, H.; Attallah, M.M.; Adkins, N.J.; Musker, A.J.; Roberts, G.T.; Tenev, N.; Smith, M. Development and testing of an additively manufactured monolithic catalyst bed for HTP thruster applications. Applied Catalysis A: General 2017, 542, 125-135, doi:https://doi.org/10.1016/j.apcata.2017.05.019. 45. Hassanin, H.; Alkendi, Y.; Elsayed, M.; Essa, K.; Zweiri, Y. Controlling the properties of additively manufactured cellular structures using machine learning approaches. Advanced Engineering Materials 2020. 46. Essa, K.; Sabouri, A.; Butt, H.; Basuny, F.H.; Ghazy, M.; El-Sayed, M.A. Laser additive manufacturing of 3D meshes for optical applications. PloS one 2018, 13. 47. Liu, F.; Zhang, D.Z.; Zhang, P.; Zhao, M.; Jafar, S. Mechanical properties of optimized diamond lattice structure for bone scaffolds fabricated via selective laser melting. Materials 2018, 11, 374. 48. Weißmann, V.; Wieding, J.; Hansmann, H.; Laufer, N.; Wolf, A.; Bader, R. Specific yielding of selective laser-melted Ti6Al4V open-porous scaffolds as a function of unit cell design and dimensions. Metals 2016, 6, 166. 49. Choy, S.Y.; Sun, C.-N.; Leong, K.F.; Wei, J. Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: Design, orientation and density. Additive Manufacturing 2017, 16, 213-224. |
---|