References | 1. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. https://doi.org/10.3322/CAAC.21654. 2. Oser, M.G.; Niederst, M.J.; Sequist, L.V.; Engelman, J.A. Transformation from Non-Small-Cell Lung Cancer to Small-Cell Lung Cancer: Molecular Drivers and Cells of Origin. Lancet Oncol. 2015, 16, e165–e172. https://doi.org/10.1016/S1470-2045(14)71180-5. 3. Padinharayil, H.; Varghese, J.; John, M.C.; Rajanikant, G.K.; Wilson, C.M.; Al-Yozbaki, M.; Renu, K.; Dewanjee, S.; Sanyal, R.; Dey, A.; et al. Non-Small Cell Lung Carcinoma (NSCLC): Implications on Molecular Pathology and Advances in Early Diagnostics and Therapeutics. Genes Dis. 2023, 10, 960–989. https://doi.org/10.1016/J.GENDIS.2022.07.023. 4. Brinton, L.T.; Sloane, H.S.; Kester, M.; Kelly, K.A. Formation and Role of Exosomes in Cancer. Cell. Mol. Life Sci. 2015, 72, 659– 671. https://doi.org/10.1007/s00018-014-1764-3. 5. Zebrowska, A.; Widlak, P.; Whiteside, T.; Pietrowska, M. Signaling of Tumor-Derived Sev Impacts Melanoma Progression. Int. J. Mol. Sci. 2020, 21, 5066. https://doi.org/10.3390/ijms21145066. 6. Zebrowska, A.; Skowronek, A.; Wojakowska, A.; Widlak, P.; Pietrowska, M. Metabolome of Exosomes: Focus on Vesicles Released by Cancer Cells and Present in Human Body Fluids. Int. J. Mol. Sci. 2019, 20, 3461. https://doi.org/10.3390/ijms20143461. 7. Padinharayil, H.; George, A. Small Extracellular Vesicles: Multi-Functional Aspects in Non-Small Cell Lung Carcinoma. Crit. Rev. Oncol. Hematol. 2024, 198, 104341. https://doi.org/10.1016/j.critrevonc.2024.104341. 8. Padinharayil, H.; Varghese, J.; Wilson, C.; George, A. Mesenchymal Stem Cell-Derived Exosomes: Characteristics and Applications in Disease Pathology and Management. Life Sci. 2024, 342, 122542. https://doi.org/10.1016/j.lfs.2024.122542. 9. Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal Information for Studies of Extracellular Vesicles (MISEV2023): From Basic to Advanced Approaches. J. Extracell. Vesicles 2024, 13, e12404. https://doi.org/10.1002/JEV2.12404. 10. Whiteside, T.L. Tumor-Derived Exosomes and Their Role in Cancer Progression. Adv. Clin. Chem. 2016, 74, 103–141. https://doi.org/10.1016/bs.acc.2015.12.005. 11. Kok, V.C.; Yu, C.C. Cancer-Derived Exosomes: Their Role in Cancer Biology and Biomarker Development. Int. J. Nanomed. 2020, 15, 8019–8036. https://doi.org/10.2147/IJN.S272378. 12. Théry, C.; Zitvogel, L.; Amigorena, S. Exosomes: Composition, Biogenesis and Function. Nat. Rev. Immunol. 2002, 2, 569–579. https://doi.org/10.1038/nri855. 13. Ma, F.; Vayalil, J.; Lee, G.; Wang, Y.; Peng, G. Emerging Role of Tumor-Derived Extracellular Vesicles in T Cell Suppression and Dysfunction in the Tumor Microenvironment. J. Immunother. Cancer 2021, 9, e003217. https://doi.org/10.1136/JITC-2021-003217. 14. Whiteside, T.L. The Effect of Tumor-Derived Exosomes on Immune Regulation and Cancer Immunotherapy. Future Oncol. 2017, 13, 2583–2592. https://doi.org/10.2217/fon-2017-0343. 15. Azambuja, J.H.; Ludwig, N.; Yerneni, S.S.; Braganhol, E.; Whiteside, T.L. Arginase-1+ Exosomes from Reprogrammed Macrophages Promote Glioblastoma Progression. Int. J. Mol. Sci. 2020, 21, 3990. https://doi.org/10.3390/ijms21113990. Proteomes 2025, 13, 15 21 of 22 16. Zhao, Y.; Liu, L.; Sun, R.; Cui, G.; Guo, S.; Han, S.; Li, Z.; Bai, T.; Teng, L. Exosomes in Cancer Immunoediting and Immunotherapy. Asian J. Pharm. Sci. 2022, 17, 193–205. https://doi.org/10.1016/J.AJPS.2021.12.001. 17. Soltész, B.; Buglyó, G.; Németh, N.; Szilágyi, M.; Pös, O.; Szemes, T.; Balogh, I.; Nagy, B. The Role of Exosomes in Cancer Progression. Int. J. Mol. Sci. 2021, 23, 8. https://doi.org/10.3390/IJMS23010008. 18. Whiteside, T.L.; Mandapathil, M.; Szczepanski, M.; Szajnik, M. Mechanisms of Tumor Escape from the Immune System: Adenosine-Producing Treg, Exosomes and Tumor-Associated TLRs. Bull. Cancer 2011, 98, E25–E31. https://doi.org/10.1684/bdc.2010.1294. 19. Whiteside, T.L. Immune Suppression in Cancer: Effects on Immune Cells, Mechanisms and Future Therapeutic Intervention. Semin. Cancer Biol. 2006, 16, 3–15. https://doi.org/10.1016/j.semcancer.2005.07.008. 20. Jeong, W.K.; Wieckowski, E.; Taylor, D.D.; Reichert, T.E.; Watkins, S.; Whiteside, T.L. Fas Ligand-Positive Membranous Vesicles Isolated from Sera of Patients with Oral Cancer Induce Apoptosis of Activated T Lymphocytes. Clin. Cancer Res. 2005, 11, 1010– 1020. https://doi.org/10.1158/1078-0432.1010.11.3. 21. Zhou, Q.; Wei, S.; Wang, H.; Li, Y.; Fan, S.; Cao, Y.; Wang, C. T Cell-Derived Exosomes in Tumor Immune Modulation and Immunotherapy. Front. Immunol. 2023, 14, 1130033. https://doi.org/10.3389/FIMMU.2023.1130033. 22. Taylor, D.D.; Gerçel-Taylor, C. Tumour-Derived Exosomes and Their Role in Cancer-Associated T-Cell Signalling Defects. Br. J. Cancer 2005, 92, 305–311. https://doi.org/10.1038/sj.bjc.6602316. 23. Clayton, A.; Mitchell, J.P.; Court, J.; Mason, M.D.; Tabi, Z. Human Tumor-Derived Exosomes Selectively Impair Lymphocyte Responses to Interleukin-2. Cancer Res. 2007, 67, 7458–7466. 24. Baitsch, L.; Baumgaertner, P.; Devêvre, E.; Raghav, S.K.; Legat, A.; Barba, L.; Wieckowski, S.; Bouzourene, H.; Deplancke, B.; Romero, P.; et al. Exhaustion of Tumor-Specific CD8+ T Cells in Metastases from Melanoma Patients. J. Clin. Investig. 2011, 121, 2350–2360. https://doi.org/10.1172/JCI46102. 25. Wherry, E.J. T Cell Exhaustion. Nat. Immunol. 2011, 12, 492–499. https://doi.org/10.1038/ni.2035. 26. Owen, D.L.; Sjaastad, L.E.; Farrar, M.A. Regulatory T Cell Development in the Thymus. J. Immunol. 2019, 203, 2031–2041. https://doi.org/10.4049/jimmunol.1900662. 27. Ye, S.B.; Li, Z.L.; Luo, D.H.; Huang, B.J.; Chen, Y.S.; Zhang, X.S.; Cui, J.; Zeng, Y.X.; Li, J. Tumor-Derived Exosomes Promote Tumor Progression and T-Cell Dysfunction through the Regulation of Enriched Exosomal MicroRNAs in Human Nasopharyngeal Carcinoma. Oncotarget 2014, 5, 5439–5452. https://doi.org/10.18632/oncotarget.2118. 28. Wieckowski, E.U.; Visus, C.; Szajnik, M.; Szczepanski, M.J.; Storkus, W.J.; Whiteside, T.L. Tumor-Derived Microvesicles Promote Regulatory T Cell Expansion and Induce Apoptosis in Tumor-Reactive Activated CD8+ T Lymphocytes. J. Immunol. 2009, 183, 3720–3730. https://doi.org/10.4049/jimmunol.0900970. 29. Salakou, S.; Tsamandas, A.C.; Bonikos, D.S.; Papapetropoulos, T.; Dougenis, D. The Potential Role of Bcl-2, Bax, and Ki67 Expression in Thymus of Patients with Myasthenia Gravis, and Their Correlation with Clinicopathologic Parameters. Eur. J. Cardio-Thorac. Surg. 2001, 20, 712–721. https://doi.org/10.1016/S1010-7940(01)00776-X. 30. Evans, H.G.; Roostalu, U.; Walter, G.J.; Gullick, N.J.; Frederiksen, K.S.; Roberts, C.A.; Sumner, J.; Baeten, D.L.; Gerwien, J.G.; Cope, A.P.; et al. TNF-α Blockade Induces IL-10 Expression in Human CD4+ T Cells. Nat. Commun. 2014, 5, 3199. https://doi.org/10.1038/ncomms4199. 31. Jutel, M.; Akdis, M.; Budak, F.; Aebischer-Casaulta, C.; Wrzyszcz, M.; Blaser, K.; Akdis, C.A. IL-10 and TGF-β Cooperate in the Regulatory T Cell Response to Mucosal Allergens in Normal Immunity and Specific Immunotherapy. Eur. J. Immunol. 2003, 33, 1205–1214. https://doi.org/10.1002/EJI.200322919. 32. Akbar, A.N.; Borthwick, N.J.; Wickremasinghe, R.G.; Panayiotidis, P.; Pilling, D.; Bofill, M.; Krajewski, S.; Reed, J.C.; Salmon, M. Interleukin-2 Receptor Common Gamma-Chain Signaling Cytokines Regulate Activated T Cell Apoptosis in Response to Growth Factor Withdrawal: Selective Induction of Anti-Apoptotic (Bcl-2, Bcl-XL) but Not pro-Apoptotic (Bax, Bcl-XS) Gene Expression. Eur. J. Immunol. 1996, 26, 294–299. https://doi.org/10.1002/EJI.1830260204. 33. Hay, Z.L.Z.; Slansky, J.E. Granzymes: The Molecular Executors of Immune-Mediated Cytotoxicity. Int. J. Mol. Sci. 2022, 23, 1833. https://doi.org/10.3390/IJMS23031833. Proteomes 2025, 13, 15 22 of 22 34. Po, A.; Eyers, C.E. Top-Down Proteomics and the Challenges of True Proteoform Characterization. J. Proteome Res. 2023, 22, 3663–3675. https://doi.org/10.1021/ACS.JPROTEOME.3C00416. 35. Schaffer, L.V.; Millikin, R.J.; Shortreed, M.R.; Scalf, M.; Smith, L.M. Improving Proteoform Identifications in Complex Systems Through Integration of Bottom-Up and Top-Down Data. J. Proteome Res. 2020, 19, 3510. https://doi.org/10.1021/ACS.JPROTEOME.0C00332. |
---|