Challenges and strategies in precision medicine for non-small cell lung cancer

Journal article


Wilson, C., Al-Akhrass, A. and Sacco, J. 2016. Challenges and strategies in precision medicine for non-small cell lung cancer. Current Pharmaceutical Design. 22.
AuthorsWilson, C., Al-Akhrass, A. and Sacco, J.
Abstract

Lung cancer is the most common cause of cancer- related death worldwide, causing over 1.2 million deaths each year. Non–small-cell lung cancer (NSCLC) consists of a group of malignancies that are pathologically and molecularly diverse but that are all characterised by a poor prognosis. Survival rates for lung cancer patients have improved very slowly and only to a modest degree owing partly to poor funding for research into this malignancy and stigma associated with smoking, as well as relative chemo-resistance. However, in recent years, NSCLC has become an exemplar for precision medicine, mainly following development of drugs targeting the receptors of epidermal growth factor and anaplastic lymphoma kinase. While epidermal growth factor receptor and anaplastic lymphoma kinase inhibitors are only applicable to a minority of patients and benefits are almost invariably short-lived, current studies indicate that at least 50% of patients with NSCLC have a targetable mutation. With a growing armamentarium of inhibitors against these targets in development, there is a hope that a greater proportion of patients will benefit from precision medicine and that such benefits will be sustained. However, there remain significant challenges in the development of precision medicine in NSCLC. These include: identification and validation of new targets; ensuring biopsies are fit for purpose; tumour heterogeneity; requirements for serial tumour assessments; and not least cost. In this review, we will discuss the current status of precision medicine in NSCLC as well as how basic and translational research are paving the way towards overcoming the above challenges. In addition, we will pay attention to clinical strategies in respect to liquid biopsies and the potential use of extracellular vesicles such as exosomes in cancer therapeutics.

Year2016
JournalCurrent Pharmaceutical Design
Journal citation22
PublisherBentam Science
ISSN1381-6128
Digital Object Identifier (DOI)doi:10.2174/1381612822666160603014932
Publication dates
Online02 Jun 2016
Publication process dates
Deposited12 Jul 2016
Accepted02 Apr 2016
Accepted author manuscript
Permalink -

https://repository.canterbury.ac.uk/item/87w72/challenges-and-strategies-in-precision-medicine-for-non-small-cell-lung-cancer

Download files

Accepted author manuscript
  • 2
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Applications and strategies in nanodiagnosis and nanotherapy in lung cancer
Woodman, C., Vundu, G., George, A. and Wilson, C. 2020. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Seminars in Cancer Biology.
Alternative splicing and protein diversity: plants versus animals
Chaudhary, S., Khokhar, W., Jabre, I., Reddy A.S.N., Byrne, L., Wilson, C.M. and Syed, N. 2019. Alternative splicing and protein diversity: plants versus animals. Frontiers in Plant Science. 10 (708).
The role of endoproteolytic processing in neurodegeneration
Wilson, C., Mushtaq, G., Kamal, M. and Terro, F. 2016. The role of endoproteolytic processing in neurodegeneration. CNS and Neurological Disorders Drug Targets. 15.
Sortilin mediates the release and transfer of exosomes in concert with two tyrosine kinase receptors
Wilson, C., Naves, T., Vincent, F., Lalloue, F. and Jauberteau, M. 2015. Sortilin mediates the release and transfer of exosomes in concert with two tyrosine kinase receptors.
Sortilin mediates the release and transfer of exosomes in concert with two tyrosine kinase receptors.
Wilson, C., Naves, T., Vincent, F., Melloni, B., Bonnaud, F., Lalloue, F. and Jauberteau, M. 2014. Sortilin mediates the release and transfer of exosomes in concert with two tyrosine kinase receptors. Journal of Cell Science (JCS). 127 (18), pp. 3983-3997.