References | 1. Ricci A (2008) Amino group chemistry: from synthesis to the life sciences. Wiley-VCH, Weinheim 2. Kurti L, Czako B (2005) Strategic applications of named reactions in organic synthesis. Academic Press, San Diego 3. Couché E, Fkyerat A, Tabacchi R (2003) Asymmetric synthesis of the cis- and trans-3,4-dihydro-2,4,8-trihydroxynaphthalen-1(2H)- ones. Helv Chim Acta 86:210–221 4. Seebach D, Yoshinari T, Beck AK, Ebert MO, Castro-Alvarez A, Vilarrasa J, Reiher M (2014) How small amounts of impurities are sufficient to catalyze the interconversion of carbonyl compounds and iminium ions, or is there a metathesis through 1,3- oxazetidinium ions? Experiments, speculations, and calculations. Helv Chim Acta 97:1177–1203 5. Emmons WD (1957) The preparation and properties of oxaziranes. J Am Chem Soc 79:5739–5754 6. Davis FA, Weismiller MC (1990) Enantioselective synthesis of tertiary α-hydroxy carbonyl compounds using [(8,8- dichlorocamphoryl)sulfonyl]oxaziridine. J Organomet Chem 55: 3715–3717 7. Davis FA, Sheppard AC, Chen BC, Haque MS (1990) Chemistry of oxaziridines. 14. Asymmetric oxidation of ketone enolates using enantiomerically pure (camphorylsulfonyl)oxaziridine. J Am Chem Soc 112:6679–6690 8. Davis FA, Sheppard AC (1989) Applications of oxaziridines in organic synthesis. Tetrahedron 45:5703–5742 9. Schirmann J-P, Bourdauducq P (2001) Hydrazine. Ullmann’s Encycl Ind Chem 10. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Crystallogr Sect B 72:171– 179 search conducted September 2018 11. Taghizadeh MT, Vatanparast M, Nasirianfar S (2015) Oxaziridine (C-CH3NO), C-CH2NO radicals and Cl, NH2 and methyl derivatives of oxaziridine; structures and quantum chemical parameters. Chem J Moldova 10:77–88 12. Yang W, Parr RG (1985) Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci U S A 82:6723–6726 13. Chauvin ER, Lepetit C, Silvi B, Alikhani E (2016) Applications of topological methods in molecular chemistry. Springer International Publishing, Cham 14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, 2188 Struct Chem (2019) 30:2181–2189 Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, revision E.01. Gaussian, Inc., Wallingford 15. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652 16. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789 17. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211 18. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98: 11623–11627 19. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange– correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57 20. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620 21. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101 22. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Accounts 120:215–241 23. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023 24. Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806 25. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47:1045– 1052 26. Feller D (2018) The role of databases in support of computational chemistry calculations. J Comput Chem 17:1571–1586 27. Bartlett RJ, Purvis GD (1978) Many-body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitations for the correlation problem. Int J Quantum Chem 14: 561–581 28. Pople JA, Head-Gordon M, Raghavachari K (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys 87:5968–5975 29. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1998) NBO Version 3.1. TCI. University of Wisconsin, Madison 30. Feixas F, Matito E, Duran M, Solà M, Silvi B (2010) Electron localization function at the correlated level: a natural orbital formulation. J Chem Theory Comput 6:2736–2742 31. Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput Chem 23:597–604 32. Kohout M (2017) Program DGrid, version 5.0 33. Lu T, Chen F (2011) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592 34. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605– 1612 35. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford 36. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92: 5397–5403 37. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371: 683 38. Malcolm N, Popelier PLA (2003) The full topology of the Laplacian of the electron density: scrutinising a physical basis for the VSEPR model. Faraday Discuss 124:353–363 39. Fuentealba P, Chamorro E, Santos JC (2007) Chapter 5 understanding and using the electron localization function. Theor Comp Chem 19:57–85 40. Fradera X, Austen MA, Bader RFW (1999) The Lewis model and beyond. J Phys Chem A 103:304–314 41. Silvi B (2000) Direct space representation of the metallic bond. J Phys Chem A 104:947–953 42. Krokidis X, Noury S, Silvi B (1997) Characterization of elementary chemical processes by catastrophe theory. J Phys Chem A 101: 7277–7282 43. Alikhani ME, Fuster F, Silvi B (2005) What can tell the topological analysis of ELF on hydrogen bonding? Struct Chem 16:203–210 44. Fuster F, Silvi B (2000) Does the topological approach characterize the hydrogen bond? Theor Chem Accounts 104:13–21 45. Silvi B (2002) The synaptic order: a key concept to understand multicenter bonding. J Mol Struct 614:3–10 46. Chevreau H, Sevin A (2000) An electron localization function study of the strain energy in carbon compounds. Chem Phys Lett 322:9–14 47. Berski S, Gordon AJ, Latajka Z (2014) Electron localization function study on the chemical bonding in a real space for tetrahedrane, cubane, adamantane, and dodecahedrane and their perfluorinated derivatives and radical anions. J Phys Chem A 118:4147–4156 48. Shaik S, Danovich D, Silvi B, Lauvergnat DL, Hiberty PC (2005) Charge-shift bonding - a class of electron-pair bonds that emerges from valence bond theory and is supported by the electron localization function approach. Chem Eur J 11:6358–6371 49. Zhang L, Ying F, Wu W, Hiberty PC, Shaik S (2009) Topology of electron charge density for chemical bonds from valence bond theory: a probe of bonding types. Chem Eur J 15:2979–2989 50. Silvi B (2004) How topological partitions of the electron distributions reveal delocalisation. Phys Chem Chem Phys 6:256–260 51. Raub S, Jansen G (2001) A quantitative measure of bond polarity from the electron localization function and the theory of atoms in molecules. Theor Chem Accounts 106:223–232 52. Kohout M (2004) A measure of electron localizability. Int J Quantum Chem 97:658 53. Kohout M (2007) Bonding indicators from electron pair density functionals. Faraday Discuss 135:43–54 54. Weinhold F (1998) Encyclopedia of computational chemistry. John Wiley & Sons, Chichester 55. Wiberg KB (1966) Application of the Pople-Santry-Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096 |
---|