Theoretical insights and quantitative prediction of the nature of boron–chalcogen (O, S, Se, Te) interactions using the electron density and the electron localisation function (ELF)

Journal article


Michalski, M., Gordon, A. and Berski, S. 2021. Theoretical insights and quantitative prediction of the nature of boron–chalcogen (O, S, Se, Te) interactions using the electron density and the electron localisation function (ELF). Polyhedron. https://doi.org/10.1016/j.poly.2021.115495
AuthorsMichalski, M., Gordon, A. and Berski, S.
Abstract

Local electronic structure of the boron-chalcogen bond B-Ch (Ch = O, S, Se, Te) has been investigated from the perspective of topological analysis of the electron localisation function (ELF) and the electron density. Calculations were carried out for H3BO3 and 27 experimentally known organoboron compounds with B-Ch bonds deposited in Cambridge Structural Database (CSD), and showed that the B-Ch bonds are covalent with similar values of basin populations (1.50–2.26e). They can be characterised as 2-center-2-electron bonds and the nature of the B-O bond differs from the B-Ch (Ch = S, Se, Te) bonds. The AIM analysis shows positive values of the Laplacian of ρ(r) for BCP characterising the B-O bonding and negative values for the B-Ch (Ch = S, Se, Te) bonding. The covalency of the B-O bond may come from dative mechanism. The topological analysis of the ELF shows the B-O bond exhibits the highest median polarity of 0.82 among the studied B-Ch bonds, mainly formed by electrons from the O atom. Polarity is clearly smaller for B-Ch (Ch = S, Se, Te) bonds and its values are between 0.03 and 0.55. The covalency of the boron-chalcogen bond, predicted by calculating differences between electronegativity values is anticorrelated with the basin population for the V(B,Ch) basin.

KeywordsBoron; Chalcogen; Organoboron; AIM; ELF; Electron localised function
Year2021
JournalPolyhedron
PublisherElsevier
Digital Object Identifier (DOI)https://doi.org/10.1016/j.poly.2021.115495
Official URLhttps://doi.org/10.1016/j.poly.2021.115495
Publication dates
Online06 Oct 2021
Publication process dates
Accepted22 Sep 2021
Deposited22 Aug 2022
Accepted author manuscript
License
Output statusPublished
Permalink -

https://repository.canterbury.ac.uk/item/9204y/theoretical-insights-and-quantitative-prediction-of-the-nature-of-boron-chalcogen-o-s-se-te-interactions-using-the-electron-density-and-the-electron-localisation-function-elf

Restricted files

Accepted author manuscript

  • 5
    total views
  • 0
    total downloads
  • 3
    views this month
  • 0
    downloads this month

Export as

Related outputs

The epistemic insight digest: Issue : Autumn 2022
Gordon, A., Shalet, D., Simpson, S., Hassanin, H., Lawson, F., Lawson, M., Litchfield, A., Thomas, C., Canetta, E., Manley, K. and Choong, C. Shalet, D. (ed.) 2022. The epistemic insight digest: Issue : Autumn 2022. Canterbury Canterbury Christ Church University.
Leading transformation in ITE teaching within the EI consortium
Gordon, A.J. 2022. Leading transformation in ITE teaching within the EI consortium.
The epistemic insight digest: Issue 4: Spring 2022
Gordon, A., Cullimore, M., Hackett, L., Shalet, D., Jennings, B-L, Semaan, A. S. and Pickett, M. Shalet, D. (ed.) 2022. The epistemic insight digest: Issue 4: Spring 2022. Canterbury Canterbury Christ Church University.
Interdisciplinary engineering education - essential for the 21st century
Gordon, A., Simpson, S. and Hassanin, H. 2022. Interdisciplinary engineering education - essential for the 21st century.
In the search for ditriel B⋯Al non-covalent bonding
Berski, S. and Gordon, A. 2021. In the search for ditriel B⋯Al non-covalent bonding. New Journal of Chemistry . 45, pp. 16740-16749. https://doi.org/10.1039/D1NJ01963E