Abstract | Electronic structure of the XeOF2 molecule and its two complexes with HX (X= F, Cl, Br, I) molecules have been studied in the gas phase using quantum chemical topology methods: topological analysis of electron localization function (ELF), electron density, ρ(r), reduced gradient of electron density |RDG(r)| in real space, and symmetry adapted perturbation theory (SAPT) in the Hilbert space. The wave function has been approximated by the MP2 and DFT methods, using APF-D, B3LYP, M062X, and B2PLYP functionals, with the dispersion correction as proposed by Grimme (GD3). For the Xe-F and Xe=O bonds in the isolated XeOF2 molecule, the bonding ELF-localization basins have not been observed. According to the ELF results, these interactions are not of covalent nature with shared electron density. There are two stable F2OXe…HF complexes. The first one is stabilized by the F-H…F and Xe…F interactions (type I) and the second by the F-H…O hydrogen bond (type II). The SAPT analysis confirms the electrostatic term, Eelst (1) and the induction energy, Eind (2) to be the major contributors to stabilizing both types of complexes. |
---|
References | 1. Ogden JS, Turner J (1966) The hydrolysis of xenon tetrafluoride at −80°. J Chem Commun 19:693–694 2. Jacob E, Opferkuch R (1976) Xenonoxiddifluorid, XeOF2. Angew Chem Int Ed Engl 15:158–159 3. Brock DS, Bilir V, Mercier HPA, Schrobilgen GJ (2007) XeOF2, F2OXeNCCH3, and XeOF2•nHF; rare examples of Xe(IV) oxide fluorides. J Am Chem Soc 129:3598–3611 4. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford Univ Press, Oxford 5. Bohórquez HJ, Boyd RJ (2010) A localized electrons detector for atomic and molecular systems. Theor Chem Accounts 127:393–400 6. Bohórquez HJ, Matta CF, Boyd RJ (2010) The localized electrons detector as an ab initio representation of molecular structures. Int J Quantum Chem 110:2418–2425 7. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506 8. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92: 5397–5403 9. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371: 683–686 (London, UK) 10. Jeziorski B, Moszynski R, Szalewicz K (1994) Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem Rev 94:1887–1930 (Washington, DC, US) 11. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al (2009) Gaussian 09, Revision D01. Gaussian, Inc, Wallingford 12. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622 13. Head-Gordon M, Pople JA, Frisch MJ (1998) MP2 energy evaluation by direct methods. Chem Phys Lett 153:503–506 14. Austin A, Petersson G, Frisch MJ, Dobek FJ, Scalmani G, Throssell K (2012) A density functional with spherical atom dispersion terms. J Chem Theory Comput 8:4989–5007 15. Becke AD (1993) Density-functional thermochemistry III the role of exact exchange. J Chem Phys 98:5648–5652 16. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06- class functionals and 12 other functionals. Theor Chem Accounts 120:215–241 17. Schwabe T, Grimme S (2007) Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Phys Chem Chem Phys 9:3397–3406 18. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parameterization of density functional dispersion 119 Page 10 of 11 J Mol Model (2016) 22: 119 correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132: 154104–154119 19. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M et al. MOLPRO, version 20121, a package of ab initio programs, see http://wwwmolpro.net 20. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys 124:034108– 034116 21. Perdew JP, Schmidt K (2001) Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf Proc 577:1 22. Rappoport D, Furche F (2010) Property-optimized Gaussian basis sets for molecular response calculations. J Chem Phys 133:134105– 134111 23. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566 24. Keith TA (2012) AIMAll, version 121109. TK Gristmill Software, Overland Park, aim.tkgristmill.com 25. Noury S, Krokidis X, Fuster F, Silvi B (2009) B Topmod09 26. Barbieri PL, Fantin PA, Jorge FE (2006) Gaussian basis sets of triple and quadruple zeta valence quality for correlated wave functions. Mol Phys 104:2945–2954 27. Machado SF, Camiletti CG, Canal Neto A, Jorge FE, Jorge RS (2009) Gaussian basis set of triple zeta valence quality for the atoms from K to Kr: Application in DFT and CCSD(T) calculations of molecular properties. Mol Phys 107:1713–1727 28. Campos CT, Jorge FE (2013) Triple zeta quality basis sets for atoms Rb through Xe: application in CCSD(T) atomic and molecular property calculations. Mol Phys 111:167–173 29. Feller D (1996) The role of databases in support of computational chemistry calculations. J Comput Chem 17:1571–1586 30. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47:1045– 1052 31. Raub S, Jansen G (2001) A quantitative measure of bond polarity from the electron localization function and the theory of atoms in molecules. Theor Chem Accounts 106:223–232 32. Braïda B, Hiberty PC (2013) The essential role of chargeshift bonding in hypervalent prototype XeF2. Nat Chem 5: 417–422 33. Contreras-Garcia J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting non-covalent interaction regions. J Chem Theory Comput 7:625–632 |
---|