Topological analysis of Electron Localization Function (ELF) as a tool for understanding electronic structure

Book chapter


Berski, S. and Gordon, A. J. 2023. Topological analysis of Electron Localization Function (ELF) as a tool for understanding electronic structure. in: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering Elsevier.
AuthorsBerski, S. and Gordon, A. J.
Abstract

The chapter presents an overview of selected topological analysis of electron localization function (ELF) published worldwide, either important to the development of methodology or illustrating its applications to a variety of chemical problems such as type of bonding, electronic structure, reaction mechanisms, or chemical processes. The practical application of the ELF methodology is also presented using the H3N...HXeF molecular complex, alkali metal dimers, A2, alkali metal hydrides, HA, dihalogens, X2, and hydrogen halides, HX (A= Li, Na, K, Rb, Cs, Fr, and X = F, Cl, Br, I, At), using a range of basis sets both for DFT and CCSD methods. It has been shown that topological analysis of ELF enriches understanding of the nature of chemical bonding by enabling verification of classical concepts and provides strong evidence of new types of bonding with a mechanism of fluctuating electron density.

KeywordsChemical body; Covalency; Electron localization; Topology; ELF
Year2023
Book titleReference Module in Chemistry, Molecular Sciences and Chemical Engineering
PublisherElsevier
Output statusPublished
ISBN9780124095472
Publication dates
Online03 Aug 2023
Publication process dates
Deposited02 Oct 2023
Digital Object Identifier (DOI)https://doi.org/10.1016/B978-0-12-821978-2.00062-3
Official URLhttps://www.sciencedirect.com/science/article/abs/pii/B9780128219782000623?via%3Dihub
Related URLhttps://www.sciencedirect.com/referencework/9780124095472/chemistry-molecular-sciences-and-chemical-engineering
References

1. C.A. Coulson (1952). Valence, Oxford at the Clarendon Press.
2. R.S. Mulliken, (1972) [1966]. "Spectroscopy, Molecular Orbitals, and Chemical Bonding". Nobel Lectures, Chemistry 1963–1970. Amsterdam: Elsevier Publishing Company.
3.C.A. Coulson, Mathematical Proceedings of the Cambridge Philosophical Society, 34, 204, 1938.
4.C.A. Coulson (1952). Valence, Oxford at the Clarendon Press.3rd edition posthumously edited: Roy McWeeny, Coulson’s Valence, Oxford University Press, 1979.
5. J. Gerratt, D. L. Cooper, P.B. Karadakov, M. Raimondi, Chem. Soc. Rev., 1997, 26, 87.
6. J.H. van Lenthe, G.G. Balint-Kurti, Chem. Phys. Let., 1980, 76, 138.
7. D-M. Cabaret, T. Grandou, E. Perrier, Found Phys 52, 58 (2022). https://doi.org/10.1007/s10701-022-00574-w
8. R.F.W. Bader, (1994). Atoms in Molecules: A Quantum Theory. USA: Oxford University Press. ISBN 978-0-19-855865-1.
9. R.F.W. Bader, Chem. Rev., 1991, 91, 893. doi:10.1021/cr00005a013.
10. R.F.W. Bader, "Atoms in Molecules". Encyclopedia of Computational Chemistry. 1: 64, 1998.
11. R.F.W. Bader, J. Phys. Chem. A, 2009, 113, 10391.
12. A.H. Abraham, C.D. Shaw, Dynamics: The Geometry of Behavior. 4 Volume Set: Periodic Behavior, Chaotic Behavior, Global Behavior, Bifurcation Behavior, Aerial Press
13. B. Silvi, A. Savin, Nature, 1994, 371, 683.
14. M. Kohout, Int. J. Quantum Chem., 2004, 97, 651.
15. M. Kohout, Faraday Discuss., 2007, 135, 43.
16. H.L. Schmider, A.D. Becke, J. Mol. Struct: THEOCHEM, 2000, 527, 51.
17. H. Jacobsen, Can. J. Chem., 2008, 86, 695.
18. A.A. Afonin, V. A. Semenov, A. V. Vashchenko, Phys. Chem. Chem. Phys., 2021, 23, 24536.
19. E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen, W. Yang, J. Am. Chem. Soc., 2010, 132, 6498.
20. P.L.A . Popelier, Faraday Discuss., 2007, 135, 3.
21. P.L.A . Popelier, Quantum Chemical Topology. In: Mingos D. (eds) The Chemical Bond II. Structure and Bonding, vol 170. Springer, Cham. 2016.
22. A. Scemana, P. Chacquin, M. Caffarel, J. Chem. Phys., 2004, 121, 1725.
23. S. Sillaste, R. B. Thompson, J. Phys. Chem. A, 2022, 126, 325.
24. A.D. Becke, K.E. Edgecombe, J. Chem. Phys., 1990, 92, 5397.
25. A. Savin, O. Jepsen, J. Flad, O.K. Andersen, H. Preuss, H.G. von Schnering, Angew. Chem. Int. Ed., 1992, 31, 187.
26. A. Savin, A.D. Becke, J. Flad, R. Nesper, H. Preuss, H.G. von Schnering, Angew. Chem. Int. Ed., 1991, 30, 409.
27. A. Savin, H.-J. Flad, J. Flad, H. Preuss, H.G. von Schnering, Angew. Chem. Int. Ed., 1992, 31, 185.
28. S.R. Gadre, S.A. Kulkarni, R.K. Pathak, J. Chem. Phys., 1993, 98, 3574.
29. A. Savin, B. Silvi, F. Colonna, Can. J. Chem., 1996, 74, 1088.
30. M. Kohout, A. Savin, Int. J. Quant. Chem., 1996, 60, 875.
31. R.F.W. Bader, S. Johnson, T.-H. Tang, P.L.A. Popelier, J. Phys. Chem., 1996, 100, 15398.
32. X. Krokidis, S. Noury, B. Silvi, J. Phys. Chem. A, 1997, 101, 7277.
33. M. Kohout, A. Savin, J. Comp. Chem., 1997, 18, 1431
34. S. Noury, F. Colonna, A. Savin, B. Silvi, J. Mol. Str., 1998, 450, 59.
35. P. Fuentalba, Int. J. Quant. Chem., 1998, 69, 559.
36. J.K. Burdett, T.A. McCormick, J. Phys. Chem. A, 1998, 102, 6366.
37. R. Llusar, A. Beltrán, J. Andrés, S. Noury, B. Silvi, J. Comp. Chem., 1999, 20, 1517.
38. S. Noury, X. Krokidis, F. Fuster, B. Silvi, Comp.&Chem.,1999, 23, 597
39. F. Fuster, A. Sevin, B. Silvi, J. Comp. Chem., 2000, 21, 509.
40. F. Fuster, A. Sevin, B. Silvi, J. Phys. Chem. A, 2000, 104, 852.
41. F. Fuster, B. Silvi, Chem. Phys., 2000, 252, 279.
42. H. Chevreau, A. Sevin, Chem. Phys. Lett., 2000, 322, 9.
43.F. Fuster, B. Silvi, S. Berski, Z. Latajka, J. Mol. Str., 2000, 555, 75.
44. B. Silvi, C. Gatti, J. Phys. Chem. A, 2000, 104, 947.
45. S. Raub, G. Jansen, Theor. Chem. Acc., 2001, 106, 223.
46. I. Fourré, B. Silvi, A. Sevin, H. Chevreau, J. Phys. Chem. A, 2002, 106, 2561.
47.R. Llusar, A. Beltran, J. Andrés, F. Fuster, B. Silvi, J. Phys. Chem. A, 2001, 105, 9460.
48. B. Silvi, J. Mol. Struct., 2002, 614, 3.
49. D.B. Chesnut, L.J. Bartolotti, Chem. Phys., 2002, 278, 101.
50. B. Silvi, E.S. Kryachko, O. Tishchenko, F. Fuster, M.T. Nguyen, Mol. Phys., 2002, 100, 1659.
51.S. Noury, B. Silvi, R.J. Gillespie, Inorg. Chem., 2002, 41, 2164.
52.M. Kohout, F. R. Wagner, Y. Grin, Theor. Chem. Acc., 2002, 108, 150.
53. C. Lepetit, B. Silvi, R. Chauvin, J. Phys. Chem. A, 2003, 107, 464.
54. V. Tsirelson, A. Stash, Chem. Phys. Lett., 2002, 351, 142.
55. E. Chamorro, P. Fuentalba, A. Savin, J. Comp. Chem., 2003, 24, 496.
56. B. Silvi, J. Phys. Chem. A, 2003, 107, 3081.
57. J. Pilmé, B. Silvi, M.E. Alikhani, J. Phys. Chem. A, 2003, 107, 4506.
58. J. Melin, P. Fuentalba, Int. J. Quant. Chem., 2003, 92, 381.
59. M. Kohout, Int. J. Quant. Chem., 2004, 97, 651.
60. A. Scemama, P. Chaquin, M. Caffarel, J. Chem. Phys. 121, 1725 (2004)
61. J.C. Santos, W. Tiznado, R. Contreras, P. Fuentalba, J. Chem. Phys., 2004, 120, 1670.
62. R.J. Gillespie, S. Noury, J. Pilm., B. Silvi, Inorg. Chem., 2004, 43, 3248.
63. A. Savin, J. Phys. Chem. Solids, 2004, 65, 2025.
64. M. Kohout, K. Pernal, F.R. Wagner, Y. Grin, Theor. Chem. Acta, 2004, 112, 453.
65. B. Silvi, Phys. Chem. Chem. Phys., 2004, 6, 256.
66. M. Erdmann, E.K.U. Gross, V. Engel, J. Chem. Phys., 2004, 121, 9666.
67. D. Jayatilaka, D. Grimwood, Acta Crystallogr., Sect A: Found. Crystallogr. 2004, A60, 111.
68. T. Burnus, M.A.L. Marques, E.K.U. Gross, Phys. Rev. A, 2005, 71, 010501(r)
69. B. Silvi, I. Fourr., M.E. Alikhani, Monatsh. Chem., 2005, 136, 855.
70. S. Shaik, D. Danovich, B. Silvi, D.L. Lauvergnat, P.C. Hiberty, Chemistry - A European Journal, 2005, 11 (21). 6358-6371; doi:10.1002/chem.200500265
71. J. Poater, M. Duran, M. Sol., B. Silvi, Chem. Rev., 2005, 105, 3911.
72. J. Pilmé, B. Silvi, M.E. Alikhani, J. Phys. Chem. A, 2005, 109, 10028.
73. R.F. Nalewajski, A.M. K.ster, S. Escalante, J. Phys. Chem. A, 2005, 109, 10038.
74. P.W. Ayers, J. Chem. Sci., 2005, 117, 441.
75. R. Ponec, J. Chaves, J. Comp. Chem., 2005, 26, 1205.
76. G.V. Gibbs, D.F. Cox, N.L. Ross, T.D. Crawford, R.T. Downs, J.B. Burt, J. Phys. Chem. A, 2005, 109,
10022.
77. A. Gallegos, R. Carb.-Dorca, F. Lodier, E. Canc.s, A. Savin, J. Comp. Chem., 2005, 26, 455.
78. E. Matito, M. Duran, M. Sol., J. Chem. Phys., 2005, 122, 014109.
79. M.E. Alikhani, F. Fuster, B. Silvi, Struct. Chem., 2005, 16, 203.
80. A. Savin, J. Chem. Sci., 2005, 117, 473.
81. A. Ormeci, H. Rosner, F.R. Wagner, M. Kohout, Y. Grin, J. Phys. Chem. A, 2006, 110, 1100.
82. J. Pilmé, E.A. Robinson, R.J. Gillespie, Inorg. Chem., 2006, 45, 6198.
83. M.E. Alikhani, S. Shaik, Theor. Chem. Acc., 2006, 116, 390.
84. V. Polo, J. Andr.s, B. Silvi, J. Comp. Chem., 2007, 28, 857.
85. I. Fourré, B. Silvi, Heteroat. Chem., 2007, 18, 135.
86. I. Fourré, H. G.rard, B. Silvi, J. Mol. Struct. (Theochem), 2007, 811, 69.
87. F.R. Wagner, V. Bezugly, M. Kohout, Y. Grin, A European Journal, 2007,13, 5724
88. J. Pilmé, J-P. Piquemal, J. Comp. Chem., 2008, 29, 1440.
89. A. Martín Pendás, E. Francisco, M.A. Blanco, Chem. Phys. Lett., 2008, 454, 396.
90. A. Fernandez, L. Rincon, R. Almeida, J. Mol. Struct. (Theochem), 2009, 911, 118.
91. F. Feixas, E. Matito, M. Duran, M. Sol., B. Silvi, J. Chem. Theory Comp., 2010, 6, 2736.
92. J. Contreras-García, J. M. Recio, Theor. Chem. Acc., 2011, 128, 411.
93. S. N. Steinmann, Y. Mo, C. Corminboeuf, Phys. Chem. Chem. Phys., 2011, 13, 20584.
94. J. Pilmé, E. Renault, T. Ayed, G. Montavon, N. Galland, J. Chem. Theory Comput., 2012, 8, 2985.
95. M. Amaouch, G. Montavon, N. Galland, J. Pilmé, Mol. Phys., 2016, 114, 1326.
96. M. Rodríguez-Mayorga, E. Ramos-Cordoba, P. Salvador, M. Solà, E. Matito, Mol. Phys., 2016, 114, 1345.
97. B. Silvi, H. Ratajczak, Phys. Chem. Chem. Phys., 2016, 18, 27442.
98. J. Furness, U. Ekström, T. Helgaker, A. Teale, Mol. Phys., 2016, 114, 1.
99. J. Pilmé, J. Comput. Chem., 2017, 38, 204.
100. D.R. Alcoba, O.B. Oña, A. Torre, L. Lain, W. Tiznado, Int J Quantum Chem., 2018, 118, e25588.
101. R. A. Boto, J-P Piquemal, J. Contreras-García, Theor. Chem. Acc. 2017, 136, 1.
102. C. Lepetit, P. Fau, K. Fajerwerg, M.L. Kahn, B. Silvi, Coord. Chem. Rev., 2017, 345, 150.
103. J. Contreras-García, C. Cardenas, J. Mol. Model., 2017, 23, 271.
104. P. Jerabek, B. Schuetrumpf, P. Schwerdtfeger, W. Nazarewicz, Phys. Rev. Let., 2018, 120, 053001-1.
105. L. Shubin, R. Chunying, L. Tian, H. Hao, J. Phys. Chem. A, 2018, 122, 11, 3087.
106. A. Parise, A. Alvarez-Ibarra, X. Wu, X. Zhao, J. Pilmé, A. de la Lande, J. Phys. Chem. Lett. 2018, 9, 844.
107. S. Pittalis, D. Varsano, A. Delgado, C.A. Rozzi, Eur. Phys. J. B, 2018, 91, 187.
108. B. Maulén, A. Echeverri, T. Gómez, P. Fuentealba, C. Cárdenas, J. Chem. Theory Comput., 2019, 15, 5532.
109. T. Novoa, J. Contreras-García, P. Fuentealba, C. Cardenas, J. Chem. Phys., 2019, 150, 204304.
110. J. Munárriz, R. Laplaza, A. Martín Pendás, J. Contreras-García, Phys. Chem. Chem. Phys., 2019, 21, 4215.
111. B. Silvi, E. Alikhani, H. Ratajczak, J. Mol. Model. 2020, 26, 62 .
112. C. G. Pech, P. A.B. Haase, D-c. Sergentu, A. Borschevsky, J. Pilmé, N. Galland, R. Maurice, J.Comput.Chem., 2020, 41, 2055.
113. K. Koumpouras, J. A. Larsson, J. Phys.: Condens. Matter. 2020, 32, 315502.
114. J. Klein, P. Fleurat-Lessard, J. Pilmé. Molecules, 2021, 26, 3336.
115. Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Snijders, T. Ziegler, J. Comput. Chem., 2001, 22, 93.
117. ADF 2022.1, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com. Optionally, you may add the following list of authors and contributors: E.J. Baerends, T. Ziegler, A.J. Atkins, J. Autschbach, O. Baseggio, D. Bashford, A. Bérces, F.M. Bickelhaupt, C. Bo, P.M. Boerrigter, C. Cappelli, L. Cavallo, C. Daul, D.P. Chong, D.V. Chulhai, L. Deng, R.M. Dickson, J.M. Dieterich, F. Egidi, D.E. Ellis, M. van Faassen, L. Fan, T.H. Fischer, A. Förster, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S.J.A. van Gisbergen, A. Goez, A.W. Götz, J.A. Groeneveld, O.V. Gritsenko, M. Grüning, S. Gusarov, F.E. Harris, P. van den Hoek, Z. Hu, C.R. Jacob, H. Jacobsen, L. Jensen, L. Joubert, J.W. Kaminski, G. van Kessel, C. König, F. Kootstra, A. Kovalenko, M.V. Krykunov, P. Lafiosca, E. van Lenthe, D.A. McCormack, M. Medves, A. Michalak, M. Mitoraj, S.M. Morton, J. Neugebauer, V.P. Nicu, L. Noodleman, V.P. Osinga, S. Patchkovskii, M. Pavanello, C.A. Peeples, P.H.T. Philipsen, D. Post, C.C. Pye, H. Ramanantoanina, P. Ramos, W. Ravenek, M. Reimann, J.I. Rodríguez, P. Ros, R. Rüger, P.R.T. Schipper, D. Schlüns, H. van Schoot, G. Schreckenbach, J.S. Seldenthuis, M. Seth, J.G. Snijders, M. Solà, M. Stener, M. Swart, D. Swerhone, V. Tognetti, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E.M. van Wezenbeek, G. Wiesenekker, S.K. Wolff, T.K. Woo, A.L. Yakovlev
118. R.J. Bartlett, G.D. Purvis III, Int. J. Quantum Chem., 1978, 14, 561.
119. G.D. Purvis III, R.J. Bartlett, J. Chem. Phys., 1982, 76 1910.
120. P. Hohenberg, W. Kohn, Phys. Rev., 1964, 136, B864-B71.
121. W. Kohn, L.J. Sham, Phys. Rev., 1965, 140, A1133-A38.
122. V.N. Staroverov, G.E. Scuseria, J. Tao, J.P. Perdew, J. Chem. Phys., 2003, 119, 12129.
123. J. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria, Phys. Rev. Lett., 2003, 91, 146401.
124. T.H. Dunning, J. Chem. Phys., 1989, 90, 1007.
125 R.A. Kendall, T.H. Dunning, R.J. Harrison, J. Chem. Phys., 1992, 96, 6796.
126. B.P. Prascher, D.E. Woon, K.A. Peterson, T.H. Dunning, A.K. Wilson, Theor. Chem. Acc., 2011, 128, 69.
127. D.E. Woon, T.H. Dunning, J. Chem. Phys., 1993, 98, 1358.
128. A.K. Wilson, D.E. Woon, K.A. Peterson, J. Chem. Phys., 1999, 110, 7667.
129. J.G. Hill, K.A. Peterson, J. Chem. Phys., 2018, 147, 244106.
130. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.
131. D. Rappoport, F. Furche, J. Chem. Phys., 2010, 133, 134105 .
132. T. Leininger, A. Nicklass, W. Küchle, H. Stoll, M. Dolg, A. Bergner, Chem. Phys. Lett., 1996, 255, 274.
133. K.A. Peterson, D. Figgen, E. Goll, H. Stoll, M. Dolg, J. Chem. Phys., 2003, 119, 11113.
134. L.F. Pacios, P.A. Christiansen, J. Chem. Phys., 1985, 82, 2664.
135. M.M. Hurley, L.F. Pacios, P.A. Christiansen, R.B. Ross, W.C. Ermler, J. Chem. Phys., 1986, 84, 6840.
136. L.A. LaJohn, P. A. Christiansen, R.B. Ross, T. Atashroo, W.C. Ermler, J. Chem. Phys., 1987, 87, 2812-2824.
137. R.B. Ross, J. M. Powers, T. Atashroo, W. C. Ermler, L. A. LaJohn, P. A. Christiansen, J. Chem. Phys., 1990, 93, 6654.
138. W.C. Ermler, R.B. Ross, P.A. Christiansen, Int. J. Quantum Chem., 1991, 40, 829.
139. P. L. Barbieri, P.A. Fantin, F.E. Jorge, Mol. Phys., 2006, 104, 2945.
140. S.F. Machado, G.G. Camiletti, A. Canal Neto, F.E. Jorge, S.J. Raquel, Mol. Phys., 2009, 107, 1713.
141. C.T. Campos, F.E. Jorge, Mol. Phys., 2013, 111, 167.
142. L.S.C. Martins, F.E. Jorge, S.F. Machado, Mol. Phys., 2015, 113, 3578.
143. D. Feller, J. Comput. Chem., 1996, 17, 1571.
144. B.P. Pritchard, D. Altarawy, B. Didier, T.D. Gibson, T.L. Windus. J. Chem. Inf. Model., 2019, 59, 11, 4814.
145. F. Feixas, E. Matito, M. Duran, M. Solá, B. Silvi, J. Chem. Theory Comput. 2010, 6, 2736.
146. S. Noury, X, Krokidis, X., F. Fuster, F. and B. Silvi, , 2009. Topmod09. Laboratoire de Chimie Théorique (Université Pierre et Marie Curie, Paris, France, 2009).
147. M. Kohout, DGrid, version 5.1, Dresden, 2019.
148. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33.
149. G. Honing, M. Czajkowski, Μ. Stock, W. Demtröder, J. Chem. Phys., 1979, 71, 2138.
150. I. S. Lim, P. Schwerdtfeger, T. Söhnel, H. Stoll, J. Chem. Phys., 2005, 122, 134307-1.
151. M. Aymar, O. Dulieu, F. Spiegelman, HAL, 2006. <hal-00023052>
152. K. E. Edgecombe, Smith, V.H, Müller-Plathe, F. Z. Naturforsch. 1993, 48a. 127-133.
153. S. Besnainou, M. Roux and R. Daudel, C. R. Acad. Sci. Paris, 1955, 241,311;
154. M. Roux, S. Besnainou and R. Daudel, J. Chum. Phisique, 156, 53, 218
155. L. A. Terrabuio, T. Q. Teodoro, M. G. Rachid, R. L. A. Haidukre, J. Phys. Chem.A, 2013, 117, 10489-10496.
156. D. L. Martin, Phys. Rev., 1965, 139, A150.
157. R. Wibowo, L. Aldous, S.E. Ward Jones, R.G. Compton, Chem. Phys. Lett., 2010, 492, 276.

Permalink -

https://repository.canterbury.ac.uk/item/95yv3/topological-analysis-of-electron-localization-function-elf-as-a-tool-for-understanding-electronic-structure

  • 161
    total views
  • 1
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

How can we educate future generations to effectively respond to global challenges and live sustainably?
Gordon, A.J. and Simpson, S. 2024. How can we educate future generations to effectively respond to global challenges and live sustainably? in: Billingsley, B., Chappell, K. and Simpson, S. (ed.) The Future of Knowledge: The Role of Epistemic Insight in Interdisciplinary Learning London Bloomsbury. pp. 117-136
Importance of entrepreneurship for students and academics.
Gordon, A.J. 2024. Importance of entrepreneurship for students and academics.
The challenges of leading and managing Polish Saturday schools in the United Kingdom.
Gordon, A. J. and Kozinska, M.A. 2024. The challenges of leading and managing Polish Saturday schools in the United Kingdom.
Building collaborations for a better future: Empowering diverse communities in Kent through collaboration, innovation and research
Gordon, A. J. and Stancu, R. F. 2024. Building collaborations for a better future: Empowering diverse communities in Kent through collaboration, innovation and research.
Creative strategies for implementing digital tools
Gordon, A.J. and Keane, K. 2024. Creative strategies for implementing digital tools .
Harnessing the power of AI in business
Gordon, A. J. and Keane, K. 2024. Harnessing the power of AI in business.
A self-study of teaching teachers using Epistemic Insight
Warhurst, A., Gordon, A.J. and Campbell, R. 2024. A self-study of teaching teachers using Epistemic Insight.
Exploring leadership and entrepreneurship in Polish supplementary schools in England: A pilot study
Gordon, A. J. and Kozinska, M.A. 2024. Exploring leadership and entrepreneurship in Polish supplementary schools in England: A pilot study.
Female entrepreneurship: Challenges and opportunities
Gordon, A.J. 2024. Female entrepreneurship: Challenges and opportunities.
EI STFC Power of Light animation - introducing Big Questions and Diamond Light Source
Cullimore, M., Billingsley, B., Heyes, J. and Gordon, A. EI STFC Power of Light animation - introducing Big Questions and Diamond Light Source. https://doi.org/10.5281/zenodo.7439214
Collaborating to improve teaching and learning about sustainability within an international learning community
Gordon, A., Simpson, S., Lawson, F. and Thomas, C. 2023. Collaborating to improve teaching and learning about sustainability within an international learning community.
Embedding epistemic insight (EI) in teacher training programmes in English universities: barriers and how to overcome them
Billingsley, B., Riga, F., Windsor, Mark and Gordon, A. 2023. Embedding epistemic insight (EI) in teacher training programmes in English universities: barriers and how to overcome them. Teacher Development. https://doi.org/10.1080/13664530.2023.2236056
Co-creation of learning resources that cross disciplinary boundaries within an international learning community
Gordon, A., Thomas, C., Simpson, S. and Lawson, F. 2023. Co-creation of learning resources that cross disciplinary boundaries within an international learning community.
Power of Light – collaborative co-creation of innovative resources for primary science education.
Gordon, A. and Cullimore, M. 2023. Power of Light – collaborative co-creation of innovative resources for primary science education.
Teaching sustainability and stewardship workshop 1: Collaborative approach to developing engagement with science and religion: Exploring sustainability in an international learning community
Gordon, A., Lawson, F., Simpson, S. and Thomas, C. 2023. Teaching sustainability and stewardship workshop 1: Collaborative approach to developing engagement with science and religion: Exploring sustainability in an international learning community.
Leading learning and teaching transformation across the ITE EI consortium –impact across the partner institutions
Gordon, A. 2023. Leading learning and teaching transformation across the ITE EI consortium –impact across the partner institutions.
Do multiple bonds to the boron atom exist?
Berski, S., Mierzwa, G. and Gordon, A. 2023. Do multiple bonds to the boron atom exist?
The Power of Light Zine 3 - Why do we explore the world around us? - an epistemically insightful way to explore the nature of science and research at Diamond Light Source, UK
Cullimore, M., Halford, K., Day, S,, Gordon, A., Billingsley, B. and Mosselmans, F. 2022. The Power of Light Zine 3 - Why do we explore the world around us? - an epistemically insightful way to explore the nature of science and research at Diamond Light Source, UK. https://doi.org/10.5281/zenodo.7438811
The Power of Light Zine 2 - Why does life exist? - an epistemically insightful way to explore the nature of science and research at Diamond Light Source, UK
Cullimore, M., Geraki, T., Linton, P., Gordon, A., Billingsley, B. and Halford, K. 2022. The Power of Light Zine 2 - Why does life exist? - an epistemically insightful way to explore the nature of science and research at Diamond Light Source, UK. https://doi.org/10.5281/zenodo.7438698
The Power of Light Zine 1 - Why do things change? - an epistemically insightful way to explore the nature of science and research at Diamond Light Source, UK
Cullimore, M., Halford, K., Mosselmans, F., Reeve, L., Billingsley, B. and Gordon, A. 2022. The Power of Light Zine 1 - Why do things change? - an epistemically insightful way to explore the nature of science and research at Diamond Light Source, UK. https://doi.org/10.5281/zenodo.7401129
CPD 1 - Embedding Epistemic Insight and Big Questions across a whole school curriculum
Simpson, S. and Gordon, A. 2022. CPD 1 - Embedding Epistemic Insight and Big Questions across a whole school curriculum. https://doi.org/10.5281/zenodo.7729394
Creating epistemically insightful learning experiences in primary classrooms: insights into the nature of science
Gordon, A., Simpson, S. and Lawson, F. 2022. Creating epistemically insightful learning experiences in primary classrooms: insights into the nature of science.
Transforming teacher education - introducing ITE students to Epistemic Insight: a workshop
Warhurst, A., Campbell, R. and Gordon, A.J. 2022. Transforming teacher education - introducing ITE students to Epistemic Insight: a workshop.
Bristlebots and other friends. A progression of Epistemic insight workshops using small things to ask big questions
Bentley, K., Gordon, A.J. and Litchfield, A. 2022. Bristlebots and other friends. A progression of Epistemic insight workshops using small things to ask big questions.
Science, religion and sustainability in schools: outlining a teacher learning community approach.
Gordon, A.J., Lawson, F., Simpson, S. and Thomas, C. 2022. Science, religion and sustainability in schools: outlining a teacher learning community approach.
The epistemic insight digest: Issue : Autumn 2022
Gordon, A., Shalet, D., Simpson, S., Hassanin, H., Lawson, F., Lawson, M., Litchfield, A., Thomas, C., Canetta, E., Manley, K. and Choong, C. Shalet, D. (ed.) 2022. The epistemic insight digest: Issue : Autumn 2022. Canterbury Canterbury Christ Church University.
Leading transformation in ITE teaching within the EI consortium
Gordon, A.J. 2022. Leading transformation in ITE teaching within the EI consortium.
The epistemic insight digest: Issue 4: Spring 2022
Gordon, A., Cullimore, M., Hackett, L., Shalet, D., Jennings, B-L, Semaan, A. S. and Pickett, M. Shalet, D. (ed.) 2022. The epistemic insight digest: Issue 4: Spring 2022. Canterbury Canterbury Christ Church University.
Interdisciplinary engineering education - essential for the 21st century
Gordon, A., Simpson, S. and Hassanin, H. 2022. Interdisciplinary engineering education - essential for the 21st century.
Theoretical insights and quantitative prediction of the nature of boron–chalcogen (O, S, Se, Te) interactions using the electron density and the electron localisation function (ELF)
Michalski, M., Gordon, A. and Berski, S. 2021. Theoretical insights and quantitative prediction of the nature of boron–chalcogen (O, S, Se, Te) interactions using the electron density and the electron localisation function (ELF). Polyhedron. https://doi.org/10.1016/j.poly.2021.115495
In the search for ditriel B⋯Al non-covalent bonding
Berski, S. and Gordon, A. 2021. In the search for ditriel B⋯Al non-covalent bonding. New Journal of Chemistry . 45, pp. 16740-16749. https://doi.org/10.1039/D1NJ01963E
The nature of the triple Btriple bondB, double, Bdouble bondB, single, B–B, and one-electron, B.B boron-boron bonds from the topological analysis of electron localisation function (ELF) perspective
Mierzwa, G., Gordon, A.J. and Berski, S. 2020. The nature of the triple Btriple bondB, double, Bdouble bondB, single, B–B, and one-electron, B.B boron-boron bonds from the topological analysis of electron localisation function (ELF) perspective. Journal of Molecular Structure. 1221, p. 128530. https://doi.org/10.1016/j.molstruc.2020.128530
The nature of multiple boron-nitrogen bonds studied using electron localization function (ELF), electron density (AIM), and natural bond orbital (NBO) methods
Mierzwa, G., Gordon, A.J. and Berski, S. 2020. The nature of multiple boron-nitrogen bonds studied using electron localization function (ELF), electron density (AIM), and natural bond orbital (NBO) methods. Journal of Molecular Modeling. 26 (136), pp. 1-23. https://doi.org/10.1007/s00894-020-04374-9
Epistemic insight: a systematic problem and an ecosystemic solution.
Nassaji, M. and Gordon, A.J. 2020. Epistemic insight: a systematic problem and an ecosystemic solution.
Topological analysis of the electron localisation function (ELF) applied to the electronic structure of oxaziridine: the nature of N-O bond
Michalski, M., Gordon, A.J. and Berski, S. 2019. Topological analysis of the electron localisation function (ELF) applied to the electronic structure of oxaziridine: the nature of N-O bond. Stuctural Chemistry. 30, pp. 2181-2189. https://doi.org/10.1007/s11224-019-01407-9
Topological analysis of electron localisation function: Unlocking the nature of B-C chemical bond. Possible existence of multiple bonds B@C and B„C
Mierzwa, G., Gordon, A.J. and Berski, S. 2019. Topological analysis of electron localisation function: Unlocking the nature of B-C chemical bond. Possible existence of multiple bonds B@C and B„C. Polyhedron. 170, pp. 180-187. https://doi.org/https://doi.org/10.1016/j.poly.2019.05.035
The nature of the T=T double bond (T = B, Al, Ga, In) in dialumene and its derivatives: topological study of the electron localization function (ELF)
Michalski, M., Gordon, A.J. and Berski, S. 2019. The nature of the T=T double bond (T = B, Al, Ga, In) in dialumene and its derivatives: topological study of the electron localization function (ELF). Journal of Molecular Modeling. 25, p. 211. https://doi.org/10.1007/s00894-019-4075-7
The electronic structure of molecules with the B F and B Cl bond in light of the topological analysis of electron localization function: Possibility of multiple bonds?
Mierzwa, G., Gordon, A.J. and Berski, S. 2018. The electronic structure of molecules with the B F and B Cl bond in light of the topological analysis of electron localization function: Possibility of multiple bonds? International Journal of Quantum Chemistry. 118, p. e25781. https://doi.org/10.1002/qua.25781
On the nature of the boron–copper interaction. Topological study of the electron localisation function (ELF)
Mierzwa, G., Gordon, A.J. and Berski, S. 2018. On the nature of the boron–copper interaction. Topological study of the electron localisation function (ELF). New Journal of Chemistry . 42, pp. 17096-17114. https://doi.org/10.1039/c8nj03516d
Characterisation of the reaction mechanism between ammonia and formaldehyde from the topological analysis of ELF and catastrophe theory perspective
Cmikiewicz, A., Gordon, A.J. and Berski, S. 2018. Characterisation of the reaction mechanism between ammonia and formaldehyde from the topological analysis of ELF and catastrophe theory perspective. Structural Chemistry. 29, pp. 243-255. https://doi.org/10.1007/s11224-017-1024-x
The nature of inter- and intramolecular interactions in F2OXe…HX (X= F, Cl, Br, I) complexes
Makarewicz, E., Lundell, J., Gordon, A.J. and Berski, S. 2016. The nature of inter- and intramolecular interactions in F2OXe…HX (X= F, Cl, Br, I) complexes. Journal of Molecular Modeling. 22 (119). https://doi.org/10.1007/s00894-016-2970-8
The electronic structure of the xenon insertion compounds XXe–MX2 (X = F, Cl, Br, I; M = B, Al, Ga)
Makarewicz, E., Gordon, A. and Berski, S. 2016. The electronic structure of the xenon insertion compounds XXe–MX2 (X = F, Cl, Br, I; M = B, Al, Ga). Polyhedron. 117, pp. 97-109. https://doi.org/10.1016/j.poly.2016.05.025
On the nature of interactions in the F2OXe…NCCH3 complex: Is there the Xe(IV)-N bond?
Makarewicz, E,, Lundell, J., Gordon, A.J. and Berski, S. 2016. On the nature of interactions in the F2OXe…NCCH3 complex: Is there the Xe(IV)-N bond? Journal of Computational Chemistry. 37 (20), pp. 1876-1886. https://doi.org/10.1002/jcc.24402
Diversity of the nature of the nitrogen-oxygen bond in inorganic and organic nitrites in the light of topological analysis of electron localisation function (ELF)
Berski, S. and Gordon, A. J. 2016. Diversity of the nature of the nitrogen-oxygen bond in inorganic and organic nitrites in the light of topological analysis of electron localisation function (ELF). in: Applications of Topological Methods in Molecular Chemistry https://link.springer.com/chapter/10.1007/978-3-319-29022-5_19 Springer. pp. 529-551
How many electrons form chemical bonds in the NgBeS (Ng = Ar, Kr, Xe) molecules? Topological study using the electron localisation function (ELF) and electron localisability indicator (ELI-D)
Makarewicz, E., Gordon, A.J. and Berski, S. 2016. How many electrons form chemical bonds in the NgBeS (Ng = Ar, Kr, Xe) molecules? Topological study using the electron localisation function (ELF) and electron localisability indicator (ELI-D). Structural Chemistry. 27, pp. 57-64. https://doi.org/10.1007/s11224-015-0719-0
The DFT study on the reaction between benzaldehyde and 4-amine-4H-1,2,4-triazole and their derivatives as a source of stable hemiaminals and schiff bases. Effect of substitution and solvation on the reaction mechanism
Berski, S., Gordon, A. J. and Ciunik, Z.L. 2015. The DFT study on the reaction between benzaldehyde and 4-amine-4H-1,2,4-triazole and their derivatives as a source of stable hemiaminals and schiff bases. Effect of substitution and solvation on the reaction mechanism. Journal of Molecular Modeling. 21, p. 57. https://doi.org/10.1007/s00894-015-2606-4
Nature of the bonding in the AuNgX (Ng = Ar, Kr, Xe; X = F, Cl, Br, I) molecules. Topological study on electron density and the electron localization function (ELF)
Makarewicz, E., Gordon, A. J. and Berski, S. 2015. Nature of the bonding in the AuNgX (Ng = Ar, Kr, Xe; X = F, Cl, Br, I) molecules. Topological study on electron density and the electron localization function (ELF). Journal of Physical Chemistry A. 119 (11), p. 2401–2412. https://doi.org/10.1021/jp508266k
On the multiple B-O bonding using the topological analysis of electron localisation function (ELF)
Mierzwa, G., Gordon, A. J., Latajka, Z. and Berski, S. 2014. On the multiple B-O bonding using the topological analysis of electron localisation function (ELF). Computational and Theoretical Chemistry. 1053, pp. 130-141. https://doi.org/10.1016/j.comptc.2014.10.003