References | [1] V.L. Feigin, E. Nichols, T. Alam, M.S. Bannick, E. Beghi, N. Blake, et al., Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016, Lancet Neurol. 18 (5) (2019) 459–480. [2] I. Bos, K. Wynia, J. Almansa, G. Drost, B. Kremer, J. Kuks, The prevalence and severity of disease-related disabilities and their impact on quality of life in neuromuscular diseases, Disabil. Rehabil. 41 (14) (2019) 1676–1681. [3] S. Li, G.E. Francisco, W.Z. Rymer, A new definition of poststroke spasticity and the interference of spasticity with motor recovery from acute to chronic stages, Neurorehabil. Neural Repair. (2021), 15459683211011214. [4] S. Li, G.E. Francisco, P. Zhou, Post-stroke hemiplegic gait: new perspective and insights, Front. Physiol. 9 (2018) 1021. [5] L.M. Silva, N. Stergiou, The basics of gait analysis, Biomech. Gait Anal. 164 (2020) 231. [6] K. Iyengar, G.K. Upadhyaya, R. Vaishya, V. Jain, COVID-19 and applications of smartphone technology in the current pandemic, Diabetes Metabol. Syndr.: Clin. Res. Rev. 14 (5) (2020) 733–737. [7] Y. Celik, S. Stuart, W.L. Woo, A. Godfrey, Gait analysis in neurological populations: Progression in the use of wearables, Med. Eng. Phys. 87 (2021) 9–29. [8] P.B. Shull, W. Jirattigalachote, M.A. Hunt, M.R. Cutkosky, S.L. Delp, Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention, Gait Posture 40 (1) (2014) 11–19. [9] K. Hori, Y. Mao, Y. Ono, H. Ora, Y. Hirobe, H. Sawada, et al., Inertial measurement unit-based estimation of foot trajectory for clinical gait analysis, Front. Physiol. 10 (2020) 1530. [10] C. Caramia, D. Torricelli, M. Schmid, A. Munoz-Gonzalez, J. Gonzalez-Vargas, F. Grandas, et al., IMU-based classification of Parkinson’s disease from gait: A sensitivity analysis on sensor location and feature selection, IEEE J. Biomed. Health Inf. 22 (6) (2018) 1765–1774. [11] M. Demonceau, A. Donneau, J. Croisier, E. Skawiniak, M. Boutaayamou, D. Maquet, et al., Contribution of a trunk accelerometer system to the characterization of gait in patients with mild-to-moderate Parkinson’s disease, IEEE J. Biomed. Health Inf. 19 (6) (2015) 1803–1808. [12] F. Arippa, B. Leban, M. Monticone, G. Cossu, C. Casula, M. Pau, A study on lower limb asymmetries in Parkinson’s disease during gait assessed through kinematic-derived parameters, Bioengineering 9 (3) (2022) 120. [13] C. Hansen, M. Beckbauer, R. Romijnders, E. Warmerdam, J. Welzel, J. Geritz, et al., Reliability of IMU-Derived Static Balance Parameters in Neurological Diseases, Int. J. Environ. Res. Publ. Health 18 (7) (2021) 3644. [14] B. Su, C. Smith, E. Gutierrez Farewik, Gait phase recognition using deep convolutional neural network with inertial measurement units, Biosensors 10 (9) (2020) 109. [15] F. Narv´ aez, F. Arbito, ´ R. Proano, ˜ A Quaternion-Based Method to IMU-to-Body Alignment for Gait Analysis. Digital Human Modeling. Applications in Health, Safety, Ergonomics, and Risk Management, Springer International Publishing, Cham, 2018, pp. 217–231. [16] N.D. Strzalkowski, R.M. Peters, J.T. Inglis, L.R. Bent, Cutaneous afferent innervation of the human foot sole: what can we learn from single-unit recordings? J. Neurophysiol. 120 (3) (2018) 1233–1246. [17] P.R. Cavanagh, M.M. Rodgers, A. liboshi, Pressure distribution under symptom-free feet during barefoot standing, Foot Ankle 7 (5) (1987) 262–278. [18] W. Hsu, T. Sugiarto, J. Chen, Y. Lin, The design and application of simplified insole-based prototypes with plantar pressure measurement for fast screening of flat-foot, Sensors 18 (11) (2018) 3617. [19] A.M. Ngueleu, A.K. Blanchette, L. Bouyer, D. Maltais, B.J. McFadyen, H. Moffet, et al., Design and accuracy of an instrumented insole using pressure sensors for step count, Sensors 19 (5) (2019) 984. [20] D. Cruz, C. Legaspi, D. Marcelino, R. Rosete, R. Sangalang, G. Suarez, A. Roxas, D. Serrano, R. dela Cruz, Joint gait kinematic and kinetic analysis using inertial measurement units and plantar pressure sensor system, in: IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), 2019, pp. 1–6. [21] T.T. Duong, D. Uher, S.D. Young, T. Duong, M. Sangco, K. Cornett, J. Montes, D. Zanotto, Gaussian process regression for COP trajectory estimation in healthy and pathological gait using instrumented insoles, in: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, pp. 9548–9553. [22] S. Minto, D. Zanotto, E.M. Boggs, G. Rosati, S.K. Agrawal, Validation of a footwear-based gait analysis system with action-related feedback, IEEE Trans. Neural Syst. Rehabil. Eng. 24 (9) (2015) 971–980. [23] K.S. Tee, Y.S.H. Javahar, H. Saim, W.N.W. Zakaria, S.B.M. Khialdin, H. Isa, et al., A portable insole pressure mapping system, Telkomnika 15 (4) (2017) 1493–1500. [24] A.R. Anwary, H. Yu, M. Vassallo, Optimal foot location for placing wearable IMU sensors and automatic feature extraction for gait analysis, IEEE Sens. J. 18 (6) (2018) 2555–2567. [25] L. Shu, T. Hua, Y. Wang, Q. Li, D.D. Feng, X. Tao, In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array, IEEE Trans. Inf. Technol. Biomed. 14 (3) (2010) 767–775. [26] A.M. Tahir, M.E. Chowdhury, A. Khandakar, S. Al-Hamouz, M. Abdalla, S. Awadallah, et al., A systematic approach to the design and characterization of a smart insole for detecting vertical ground reaction force (vGRF) in gait analysis, Sensors 20 (4) (2020) 957. [27] H. Kim, Y. Kang, D.R. Valencia, D. Kim, An integrated system for gait analysis using FSRs and an IMU, in: IEEE International Conference on Robotic Computing (IRC), 2018, pp. 347–351. [28] M. Burnfield, Gait analysis: normal and pathological function, J. Sports Sci. Med. 9 (2) (2010) 353. [29] V.K. Nandikolla, R. Bochen, S. Meza, A. Garcia, Experimental gait analysis to study stress distribution of the human foot, J. Med. Eng. 2017 (2017). [30] D.D. Espy, F. Yang, T. Bhatt, Y. Pai, Independent influence of gait speed and step length on stability and fall risk, Gait Posture 32 (3) (2010) 378–382. [31] D.A. Winter, Biomechanics and Motor Control of Human Movement, John Wiley & Sons, 2009. [32] W. Pirker, R. Katzenschlager, Gait disorders in adults and the elderly, Wien Klin Wochenschr 129 (3) (2017) 81–95. [33] M.R. Lim, R.C. Huang, A. Wu, F.P. Girardi, F.P. Cammisa Jr., Evaluation of the elderly patient with an abnormal gait, JAAOS-J. Am. Acad. Orthopaedic Surg. 15 (2) (2007) 107–117. [34] H.S. Lee, H. Ryu, S. Lee, J. Cho, S. You, J.H. Park, et al., Analysis of gait characteristics using hip-knee cyclograms in patients with hemiplegic stroke, Sensors 21 (22) (2021) 7685. [35] W. Mostertz, Quantifying Antalgic Gait Knee Function using Inertial Sensor Technology, Clemson University, 2008. Doctoral dissertation. [36] R.K. Avvari, M.K. Baig, T. Arunachalam, Gait analysis: an effective tool to measure human performance, in: Advances in Computational Approaches in Biomechanics: IGI Global, 2022, pp. 65–87. [37] P. Bhargava, P. Shrivastava, S.P. Nagariya, Assessment of changes in gait parameters and vertical ground reaction forces after total hip arthroplasty, Indian J. Orthopaedics 41 (2) (2007) 158. [38] W. Rueangsirarak, J. Zhang, N. Aslam, E.S. Ho, H.P. Shum, Automatic musculoskeletal and neurological disorder diagnosis with relative joint displacement from human gait, IEEE Trans. Neural Syst. Rehabil. Eng. 26 (12) (2018) 2387–2396. [39] T.T. Duong, S. Goldman, H. Zhang, R. Salazar, S. Beenders, K.M. Cornett, J.M. Bain, J. Montes, D. Zanotto, Validation of insole-based gait analysis system in young children with a neurodevelopmental disorder and autism traits, in: 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), 2020, pp. 715–720. [40] S.J.M. Bamberg, A.Y. Benbasat, D.M. Scarborough, D.E. Krebs, J.A. Paradiso, Gait analysis using a shoe-integrated wireless sensor system, IEEE Trans. Inf. Technol. Biomed. 12 (4) (2008) 413–423. [41] E. Abdulhay, N. Arunkumar, K. Narasimhan, E. Vellaiappan, V. Venkatraman, Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease, Future Gener. Comput. Syst. 83 (2018) 366–373. [42] B. Müller, W. Ilg, M.A. Giese, N. Ludolph, Validation of enhanced kinect sensor based motion capturing for gait assessment, PloS One 12 (4) (2017), e0175813. [43] A. Pfister, A.M. West, S. Bronner, J.A. Noah, Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis, J. Med. Eng. Technol. 38 (5) (2014) 274–280. [44] Y. Cha, K. Song, J. Shin, D. Kim, Gait analysis system based on slippers with flexible piezoelectric sensors, in: IEEE international conference on robotics and biomimetics (ROBIO), 2018, pp. 2479–2484. [45] P. Aqueveque, E. Germany, R. Osorio, F. Pastene, Gait segmentation method using a plantar pressure measurement system with custom-made capacitive sensors, Sensors 20 (3) (2020) 656. [46] J. Cheng, O. Amft, G. Bahle, P. Lukowicz, Designing sensitive wearable capacitive sensors for activity recognition, IEEE Sens. J. 13 (10) (2013) 3935–3947. [47] S. Wang, F.C. Lee, Analysis and applications of parasitic capacitance cancellation techniques for EMI suppression, IEEE Trans. Ind. Electron. 57 (9) (2009) 3109–3117. [48] T. Seel, J. Raisch, T. Schauer, IMU-based joint angle measurement for gait analysis, Sensors 14 (4) (2014) 6891–6909. [49] Pedalvatar, An IMU-based real-time body motion capture system using foot rooted kinematic model, in: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2014. [50] M. Demonceau, A. Donneau, J. Croisier, E. Skawiniak, M. Boutaayamou, D. Maquet, et al., Contribution of a trunk accelerometer system to the characterization of gait in patients with mild-to-moderate Parkinson’s disease, IEEE J. Biomed. Health Inf. 19 (6) (2015) 1803–1808. [51] R. Romijnders, E. Warmerdam, C. Hansen, J. Welzel, G. Schmidt, W. Maetzler, Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson’s Disease patients, J. Neuroeng. Rehabil. 18 (1) (2021) 1–10. [52] D. Lukˇsys, D. Jatuˇzis, G. Jonaitis, J. Griˇskeviˇcius, Application of continuous relative phase analysis for differentiation of gait in neurodegenerative disease, Biomed. Signal Process. Control 67 (2021), 102558. [53] J.M. Hausdorff, Gait dynamics in Parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling, Chaos: Interdiscipl. J. Nonlinear Sci. 19 (2) (2009), 026113. [54] Y. Celik, S. Stuart, W.L. Woo, E. Sejdic, A. Godfrey, Multi-modal gait: a wearable, algorithm and data fusion approach for clinical and free-living assessment, Inf. Fusion 78 (2022) 57–70. [55] T.T. Pham, Y.S. Suh, Conditional generative adversarial network-based regression approach for walking distance estimation using waist-mounted inertial sensors, in: IEEE Transactions on Instrumentation and Measurement, 2022. [56] W. Kong, J. Lin, L. Waaning, S. Sessa, S. Cosentino, D. Magistro, M. Zecca, R. Kawashima, A. Takanishi, Comparison of gait event detection from shanks and feet in single-task and multi-task walking of healthy older adults, in: IEEE International Conference on Robotics and Biomimetics (ROBIO), 2016, pp. 2063–2068. [57] D. Trojaniello, A. Cereatti, E. Pelosin, L. Avanzino, A. Mirelman, J.M. Hausdorff, et al., Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: application to elderly, hemiparetic, parkinsonian and choreic gait, J. Neuroeng. Rehabil. 11 (1) (2014) 1–12. [58] R. Romijnders, E. Warmerdam, C. Hansen, J. Welzel, G. Schmidt, W. Maetzler, Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson’s Disease patients, J. Neuroeng. Rehabil. 18 (1) (2021) 1–10. [59] M. Saito, K. Nakajima, C. Takano, Y. Ohta, C. Sugimoto, R. Ezoe, et al., An in-shoe device to measure plantar pressure during daily human activity, Med. Eng. Phys. 33 (5) (2011) 638–645. [60] H. Zhu, N. Maalej, J.G. Webster, W.J. Tompkins, P. Bach-y-Rita, J.J. Wertsch, An umbilical data-acquisition system for measuring pressures between the foot and shoe, IEEE Trans. Biomed. Eng. 37 (9) (1990) 908–911. [61] A.M. Howell, T. Kobayashi, H.A. Hayes, K.B. Foreman, S.J.M. Bamberg, Kinetic gait analysis using a low-cost insole, IEEE Trans. Biomed. Eng. 60 (12) (2013) 3284–3290. [62] P. Catalfamo, D. Moser, S. Ghoussayni, D. Ewins, Detection of gait events using an F-Scan in-shoe pressure measurement system, Gait Posture 28 (3) (2008) 420–426. [63] Y.C. Han, K.I. Wong, I. Murray, Gait phase detection for normal and abnormal gaits using IMU, IEEE Sens. J. 19 (9) (2019) 3439–3448. [64] J. Zhao, A Review of Wearable IMU (Inertial-Measurement-Unit)-based Pose Estimation and Drift Reduction Technologies, J. Phys. Conf. Ser. 1087 (4) (2018), 42003. [65] S. Qiu, H. Zhao, N. Jiang, Z. Wang, L. Liu, Y. An, et al., Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges, Inf. Fusion 80 (2022) 241–265. [66] P. Ippersiel, S.M. Robbins, P.C. Dixon, Lower-limb coordination and variability during gait: The effects of age and walking surface, Gait Posture 85 (2021) 251–257. [67] P. Bet, P.C. Castro, M.A. Ponti, Fall detection and fall risk assessment in older person using wearable sensors: A systematic review, Int. J. Med. Inf. 130 (2019), 103946. [68] G. Forbes, S. Massie, S. Craw, Fall prediction using behavioural modelling from sensor data in smart homes, Artif. Intell. Rev. 53 (2) (2020) 1071–1091. [69] J. Yu, S. Zhang, A. Wang, W. Li, Z. Ma, X. Yue, Humanoid Control of Lower Limb Exoskeleton Robot Based on Human Gait Data with Sliding Mode Neural Network, CAAI Transactions on Intelligence Technology, 2022. [70] Y. Sun, R. Huang, J. Zheng, D. Dong, X. Chen, L. Bai, et al., Design and speed-adaptive control of a powered geared five-bar prosthetic knee using bp neural network gait recognition, Sensors 19 (21) (2019) 4662. [71] J. Marín, T. Blanco, J.J. Marín, A. Moreno, E. Martitegui, J.C. Aragü´es, Integrating a gait analysis test in hospital rehabilitation: A service design approach, PloS One 14 (10) (2019), e0224409. [72] R.D. Gurchiek, R.H. Choquette, B.D. Beynnon, J.R. Slauterbeck, T.W. Tourville, M.J. Toth, et al., Open-source remote gait analysis: A post-surgery patient monitoring application, Sci. Rep. 9 (1) (2019) 1–10. [73] J. Li, Z. Wang, S. Qiu, H. Zhao, Q. Wang, D. Plettemeier, et al., Using body sensor network to measure the effect of rehabilitation therapy on improvement of lower limb motor function in children with spastic diplegia, IEEE Trans. Instrum. Meas. 69 (11) (2020) 9215–9227. [74] B. Fuentes, M.A. de Lecinana, ˜ P. Calleja-Castano, ˜ J. Carneado-Ruiz, J. Egido-Herrero, A. Gil-Núnez, ˜ et al., Impact of the COVID-19 pandemic on the organisation of stroke care, Madrid Stroke Care Plan. Neurol. (English Edition) 35 (6) (2020) 363–371. [75] J. An, J. Kim, E.C. Lai, B.C. Lee, Effects of a smartphone-based wearable telerehabilitation system for in-home dynamic weight-shifting balance exercises by individuals with Parkinson’s disease, in: 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2020, pp. 5678–5681. [76] S. Thomas, The new NHS landscape, Br. J. Neurosci. Nurs. 17 (4) (2021) 160–163. [77] A. Patel, V. Berdunov, Z. Quayyum, D. King, M. Knapp, R. Wittenberg, Estimated societal costs of stroke in the UK based on a discrete event simulation, Age Ageing 49 (2) (2020) 270–276. |
---|