References | 1. Future of Industry Ecosystems: Shared Data and Insights. Available online: https://blogs.idc.com/2021/01/06/future-of-industry-ecosystems-share... 2. NCSC For Startups: Challenges. Available online: https://www.ncsc.gov.uk/section/ncsc-for-startups/current-challenges (Accessed on 26 Jul 2024). 3. X-Force Threat Intelligence Index 2022 . Available online: https://www.ibm.com/downloads/cas/ADLMYLAZ (Accessed on 3 Augus 2022). 4. Organisational use of Enterprise Connected Devices. Available online: https://www.ncsc.gov.uk/report/organisational-use-of-enterprise-conn... (Accessed on 6 Ma 2023). 5. Khanam, S.; Ahmedy, I.B.; Idna Idris, M.Y.; Jaward, M.H.; Bin Md Sabri, A.Q. A Survey of Security Challenges, Attacks Taxonomy and Advanced Countermeasures in the Internet of Things. Access 2020, 8, 219709–219743, DOI 10.1109/ACCESS.2020.3037359. Available online: https://ieeexplore.ieee.org/document/9256294. 6. Mitrokotsa, A.; Rieback, M.R.; Tanenbaum, A.S. Classifying RFID attacks and defenses. Inf Syst Front 2010, 12, 491–505, DOI 10.1007/s10796-009-9210-z. Available online: https://link.springer.com/article/10.1007/s10796-009-9210-z. 7. Atlam, H.F.; Wills, G.B. IoT Security, Privacy, Safety and Ethics. Digital Twin Technologies and Smart Cities 2019, 123–149, DOI 10.1007/978-3-030-18732-3_8. Available online: http://link.springer.com/10.1007/978-3-030-18732-3_8. 8. Ahmad, R.; Alsmadi, I. Machine learning approaches to IoT security: A systematic literature review. Internet of things (Amsterdam. Online) 2021, 14, 100365, DOI 10.1016/j.iot.2021.100365. Available online: https://dx.doi.org/10.1016/j.iot.2021.100365. 9. Bansal, D.; Sofat, S. Use of cross layer interactions for detecting denial of service attacks in WMN. NETWKS 2010, 1–6, DOI 10.1109/NETWKS.2010.5624900. Available online: https://ieeexplore.ieee.org/document/5624900. 10. Bansal, D.; Sofat, S.; Kumar, P. Distributed cross layer approach for detecting multilayer attacks in wireless mul-ti-hop networks. ISCI 2011, 692–698, DOI 10.1109/ISCI.2011.5959000. Available online: https://ieeexplore.ieee.org/document/5959000. 11. Sodagudi, S.; Rao, D.K.R. Behavior based Anomaly detection technique to identify Multilayer attacks. IJARCSMS, May 2014 Available online: https://www.academia.edu/7655404/Behavior_based_Anomaly_detection_te... 12. Mahale, V.V.; Pareek, N.P.; Uttarwar, V.U. Alleviation of DDoS attack using advance technique, IEEE: 2017; , pp. 172–176. 13. Mythili, B.; Seetha, R.&. Accurate Detection of Multi-layer Packet Dropping Attacks Using Distributed Mobile Agents in MANET, Journal of Physics: Conference Series, , Honolulu, HI, United States, 2021IOP Science: 2021; , pp. 13. 14. Chen, Y.; Sheu, J.; Kuo, Y.; Van Cuong, N. Design and Implementation of IoT DDoS Attacks Detection System based on Machine Learning. EuCNC 2020, 122–127, DOI 10.1109/EuCNC48522.2020.9200909. Available online: https://ieeexplore.ieee.org/document/9200909. 15. Ravi, N.; Shalinie, S.M. Learning-Driven Detection and Mitigation of DDoS Attack in IoT via SDN-Cloud Archi-tecture. JIoT 2020, 7, 3559–3570, DOI 10.1109/JIOT.2020.2973176. Available online: https://ieeexplore.ieee.org/document/8993716. 16. Chkirbene, Z.; Eltanbouly, S.; Bashendy, M.; AlNaimi, N.; Erbad, A. Hybrid Machine Learning for Network Anomaly Intrusion Detection. ICIoT 2020, 163–170, DOI 10.1109/ICIoT48696.2020.9089575. Available online: https://ieeexplore.ieee.org/document/9089575. 17. Bagaa, M.; Taleb, T.; Bernabe, J.B.; Skarmeta, A. A Machine Learning Security Framework for Iot Systems. Access 2020, 8, 114066–114077, DOI 10.1109/ACCESS.2020.2996214. Available online: https://ieeexplore.ieee.org/document/9097876. 18. Shafiq, M.; Tian, Z.; Bashir, A.K.; Du, X.; Guizani, M. IoT malicious traffic identification using wrapper-based feature selection mechanisms. Computers & security 2020, 94, 101863–11, DOI 10.1016/j.cose.2020.101863. Available online: https://dx.doi.org/10.1016/j.cose.2020.101863. 19. Nimbalkar, P.; Kshirsagar, D. Feature selection for intrusion detection system in Internet-of-Things (IoT). ICT Express 2021, 7, 177–181, DOI 10.1016/j.icte.2021.04.012. Available online: https://dx.doi.org/10.1016/j.icte.2021.04.012. 20. Su, J.; He, S.; Wu, Y. Features selection and prediction for IoT attacks. High-Confidence Computing 2022, 2, 100047, DOI 10.1016/j.hcc.2021.100047. Available online: https://www.sciencedirect.com/science/article/pii/S2667295221000374. 21. Albulayhi, K.; Abu Al-Haija, Q.; Alsuhibany, S.A.; Jillepalli, A.A.; Ashrafuzzaman, M.; Sheldon, F.T. IoT Intrusion Detection Using Machine Learning with a Novel High Performing Feature Selection Method. Applied sciences 2022, 12, 5015, DOI 10.3390/app12105015. Available online: https://search.proquest.com/docview/2670089462. 22. Sujatha, G.; Ayyannan, M.; Priya, S.G.; Arun, V.; Arularasan, A.N.; Kumar, M.J. Hybrid Optimization Algorithm to Mitigate Phishing URL Attacks In Smart Cities, 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM), 2023; , pp. 1–5. 23. Swathi, G.; Shwetha, M.; Potluri, P.; Murthy Raju, K.; Kumar, Y.; Rajchandar, K. Smart Cities Hybridized to Pre-vent Phishing URL Attacks, IEEE: 2023; , pp. 817–821. 24. Khan, H.U.; Sohail, M.; Nazir, S. Features-based IoT Security Authentication Framework using Statistical Ag-gregation, Entropy, and MOORA Approaches. Access 2022, 10, 1, DOI 10.1109/ACCESS.2022.3212735. Availa-ble online: https://ieeexplore.ieee.org/document/9919340. 25. Subramani, S.; Selvi, M. Multi-objective PSO based feature selection for intrusion detection in IoT based wireless sensor networks. Optik (Stuttgart) 2023, 273, 170419, DOI 10.1016/j.ijleo.2022.170419. Available online: https://dx.doi.org/10.1016/j.ijleo.2022.170419. 26. Al Sukhni, B.; Manna, K.S.; Dave, M.J.; Zhang, L. Investigating the Security Issues of Multi-layer IoT Attacks Us-ing Machine Learning Techniques, IEEE: 2022; , pp. 1–9. 27. Al Sukhni, B.; Manna, K.S.; Dave, M.J.; Zhang, L. Exploring Optimal Set of Features in Machine Learning for Im-proving IoT Multilayer Security, 2023 IEEE 9th World Forum on Internet of Things (WF-IoT), , Aveiro, Portugal, 2023IEEE: 2023; , pp. 1–6. 28. Ferrag, M.A.; Friha, O.; Hamouda, D.; Maglaras, L.; Janicke, H. Edge-IIoTset: A New Comprehensive Realistic Cyber Security Dataset of IoT and IIoT Applications for Centralized and Federated Learning. Access 2022, 10, 40281–40306, DOI 10.1109/ACCESS.2022.3165809. Available online: https://ieeexplore.ieee.org/document/9751703. 29. Keserwani, K.; Aggarwal, A.; Chauhan, A. Attack detection in industrial IoT using novel ensemble techniques, IEEE: 2023; , pp. 1–6. 30. Tareq, I.; Elbagoury, B.M.; El-Regaily, S.; El-Horbaty, E.M. Analysis of ToN-IoT, UNW-NB15, and Edge-IIoT Da-tasets Using DL in Cybersecurity for IoT. Applied sciences 2022, 12, 9572, DOI 10.3390/app12199572. Available online: https://doaj.org/article/81aa1ed284554d89adfc6bcbe28b1488. 31. Khacha, A.; Saadouni, R.; Harbi, Y.; Aliouat, Z. Hybrid Deep Learning-based Intrusion Detection System for In-dustrial Internet of Things, IEEE: Piscataway, 2022; , pp. 1–6. 32. Al Nuaimi, T.; Al Zaabi, S.; Alyilieli, M.; AlMaskari, M.; Alblooshi, S.; Alhabsi, F.; Yusof, M.F.B.; Al Badawi, A. A comparative evaluation of intrusion detection systems on the edge-IIoT-2022 dataset. Intelligent systems with applications 2023, 20, 200298, DOI 10.1016/j.iswa.2023.200298. Available online: https://dx.doi.org/10.1016/j.iswa.2023.200298. 33. Samin, O.B.; Algeelani, N.A.A.; Bathich, A.; Qadus, A.; Amin, A. Malicious Agricultural IoT Traffic Detection and Classification: A Comparative Study of ML Classifiers. Journal of advances in information technology 2023, 14, 811–820, DOI 10.12720/jait.14.4.811-820.. 34. Ullah, S.; Boulila, W.; Koubaa, A.; Ahmad, J. MAGRU-IDS: A Multi-Head Attention-based Gated Recurrent Unit for Intrusion Detection in IIoT Networks. Access 2023, 11, 1, DOI 10.1109/ACCESS.2023.3324657. Available online: https://ieeexplore.ieee.org/document/10286032. 35. Maghrabi, L. Automated Network Intrusion Detection for Internet of Things: Security Enhancements. IEEE ac-cess 2024, 12, 30839–30851, DOI 10.1109/ACCESS.2024.3369237. Available online: https://search.proquest.com/docview/2933609713. 36. Rashid, M.M.; Khan, S.U.; Eusufzai, F.; Redwan, M.A.; Sabuj, S.R.; Elsharief, M. A Federated Learning-Based Ap-proach for Improving Intrusion Detection in Industrial Internet of Things Networks. Network (Basel) 2023, 3, 158–179, DOI 10.3390/network3010008. Available online: https://search.proquest.com/docview/2791674868. 37. Göcs, L.; Johanyák, Z.C. Feature Selection with Weighted Ensemble Ranking for Improved Classification Per-formance on the CSE-CIC-IDS2018 Dataset. Computers (Basel) 2023, 12, 147, DOI 10.3390/computers12080147. Available online: https://search.proquest.com/docview/2856956701. 38. François, D.; Wertz, V.; Verleysen, M. The permutation test for feature selection by mutual information, 2006; . 39. Vibhute, A.D.; Patil, C.H.; Mane, A.V.; Kale, K.V. Towards Detection of Network Anomalies using Machine Learning Algorithms on the NSL-KDD Benchmark Datasets. Procedia Computer Science 2024, 233, 960–969, DOI 10.1016/j.procs.2024.03.285. Available online: https://www.sciencedirect.com/science/article/pii/S1877050924006458. 40. Aljawarneh, S.; Aldwairi, M.; Yassein, M.B. Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model. Journal of computational science 2018, 25, 152–160, DOI 10.1016/j.jocs.2017.03.006. Available online: https://dx.doi.org/10.1016/j.jocs.2017.03.006. 41. Ahmad, Z.; Khan, A.S.; Cheah, W.S.; Abdullah, J.B.; Ahmad, F. Network intrusion detection system: A systematic study of machine learning and deep learnin.g approaches. Transactions on Emerging Telecommunications Tech-nologies 2021, 32, e4150–n/a, DOI 10.1002/ett.4150. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4150. 42. Salman, O.; Elhajj, I.H.; Chehab, A.; Kayssi, A. A machine learning based framework for IoT device identification and abnormal traffic detection. Transactions on Emerging Telecommunications Technologies 2022, 33, e3743, DOI https://doi.org/10.1002/ett.3743.. 43. Peterson, J.M.; Leevy, J.L.; Khoshgoftaar, T.M. A Review and Analysis of the Bot-IoT Dataset, IEEE: Piscataway, 2021; , pp. 20–27. 44. Belkacem, S. IoT-Botnet Detection Using Deep Learning Techniques, Proceedings of International Conference on Information Technology and Applications (ICITA 2022), , Portugal, 2022Springer: Singapore, 2024; , pp. 10. 45. Rehman, S.u.; Khaliq, M.; Imtiaz, S.I.; Rasool, A.; Shafiq, M.; Javed, A.R.; Jalil, Z.; Bashir, A.K. DIDDOS: An ap-proach for detection and identification of Distributed Denial of Service (DDoS) cyberattacks using Gated Re-current Units (GRU). Future generation computer systems 2021, 118, 453–466, DOI 10.1016/j.future.2021.01.022. Available online: https://dx.doi.org/10.1016/j.future.2021.01.022. 46. Alsaedi, A.; Moustafa, N.; Tari, Z.; Mahmood, A.; Anwar, A. TON_IoT Telemetry Dataset: A New Generation Dataset of IoT and IIoT for Data-Driven Intrusion Detection Systems. IEEE Access 2020, 8, 165130–165150, DOI 10.1109/ACCESS.2020.3022862.. 47. Ariyadasa, S.; Fernando, S.; Fernando, S. SmartiPhish: a reinforcement learning-based intelligent anti-phishing solution to detect spoofed website attacks. Int J Inf Secur 2024, 23, 1055–1076, DOI 10.1007/s10207-023-00778-9. Available online: https://link.springer.com/article/10.1007/s10207-023-00778-9. 48. Seetha, A.; Chouhan, S.S.; Pilli, E.S.; Raychoudhury, V. D i E vD: Disruptive Event Detection from Dynamic Datastreams using Continual Machine Learning: A Case Study with Twitter. TETC 2023, 1–12, DOI 10.1109/TETC.2023.3272973. Available online: https://ieeexplore.ieee.org/document/10122516. |
---|