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Abstract: The rapid integration of Internet of Things (IoT) systems in various sectors has escalated
security risks due to sophisticated multilayer attacks that compromise multiple security layers
and lead to significant data loss, personal information theft, financial losses etc. Existing research
on multilayer IoT attacks exhibits gaps in real-world applicability, due to reliance on outdated
datasets with a limited focus on adaptive, dynamic approaches to address multilayer vulnerabilities.
Additionally, the complete reliance on automated processes without integrating human expertise in
feature selection and weighting processes may affect the reliability of detection models. Therefore,
this research aims to develop a Semi-Automated Intrusion Detection System (SAIDS) that integrates
efficient feature selection, feature weighting, normalisation, visualisation, and human-machine
interaction to detect and identify multilayer attacks, enhancing mitigation strategies. The proposed
framework managed to extract an optimal set of 13 significant features out of 64 in the Edge-IloT
dataset, which is crucial for the efficient detection and classification of multilayer attacks, and also
outperforms the performance of the KNN model compared to other classifiers in binary classification.
The KNN algorithm demonstrated an average accuracy exceeding 94% in detecting several multilayer
attacks such as UDP, ICMP, HTTP flood, MITM, TCP SYN, XSS, SQL injection, etc.

Keywords: IoT attacks; multilayer security; feature selection; feature weighting; machine learning;
human-machine teaming

1. Introduction

The rise of the Internet of Things has changed how we live and work, leading to new
developments in areas such as health, education, energy, and transportation. This change
is driven by the increasing use of IoT devices, such as smart metres, wearable technology,
and smartphones. The number of these devices is expected to reach 55.7 billion by 2025,
according to the International Data Corporation (Global market intelligence, data, and
events provider, Massachusetts, United States) [1]. However, this growth also brings new
challenges, especially in terms of security and privacy. This is because IoT devices are
often designed with limited computational resources and processing power, making them
easy targets for cyber attackers. Estimations from the National Cyber Security Centre
(Government Cyber Security Organization, London, United Kingdom) suggest that around
98% of 10T traffic remains unencrypted [2].

Furthermore, the architecture of the IoT introduces specific vulnerabilities. Its heteroge-
neous and interconnected structure, consisting of multiple layers and diverse components,
increases susceptibility to attacks. Each layer of the IoT framework, from the perception
layer that directly interacts with the physical world to the application layer that provides
services to users, is exposed to unique vulnerabilities. For example, the communication
layer, responsible for the exchange of data between devices, stands as a prime target for
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Man-In-The-Middle (MITM) attacks. Similarly, the application layer, which interacts with
end-users, often becomes a significant target for exploitation due to software vulnerabilities.

Single-layer attacks, such as physical layer jamming, typically target the physical
layer in the IoT architecture, whereas the network layer is disrupted by radio frequency
interference. These attacks can reduce system performance but often remain isolated
to the affected layers, without affecting the overall integrity of the system. In contrast,
multilayer attacks, such as a combination of side-channel and MITM attacks, exploit
vulnerabilities across multiple layers of the IoT system. These attacks compound the risks
by targeting not only the network layer but also the application layer and physical layer,
where data interception can occur. By affecting multiple layers, multilayer attacks can
compromise the entire IoT ecosystem’s security, leading to more significant threats like
data loss and personal information theft. Therefore, multilayer attacks are inherently more
dangerous than single-layer attacks due to their ability to affect multiple components of
the IoT infrastructure simultaneously, making them more difficult to detect and mitigate.
According to the IBM Security X-Force report for 2022, 74% of IoT attacks are caused
by Mozi botnets launching MITM attacks [3]. Also, according to the National Cyber
Security Centre, UK, in 2020, a Russian hacking group leaked documents about a project
aiming to create an IoT botnet inspired by the Mirai botnet, targeting security cameras
and network video recorders to perform password attacks and grow the botnet. This
botnet, once large enough, could launch powerful DDoS attacks, illustrating the significant
threat of IoT vulnerabilities being exploited by both state and non-state actors [4]. This
research specifically examines the risks posed by multilayer attacks and explores detection
mechanisms for these complex threats.

In the landscape of IoT security, the concept of multilayer attacks has increasingly been
recognised as a critical area of concern, as addressed by [5,6]. The authors in [5] identify
types of multilayer attacks like DoS, side-channel, MITM, and cryptanalysis, whereas
the authors in [6] focus on RFID security, including attacks like covert channels, side-
channel attacks, replay attacks, and traffic analysis in their definition of multilayer attacks.
Alongside these, refs. [7,8] have also explored the categories of multilayer attacks such
as side-channel, cryptoanalysis, and MITM attacks. These studies show that multilayer
security threats in IoT systems are becoming more complex. Hence, this makes it necessary
to have secure measures to protect against different types of multilayer attacks, and this
can be achieved by understanding the comprehensive taxonomy of multilayer attacks.

Figure 1 provides a comprehensive taxonomy of multilayer attacks within IoT systems,
distinguishing them from the single-layer attacks associated with the physical, network,
and application layers, and a specialised focus on the nature of multilayer attacks that span
across these layers. The physical layer is where direct hardware damage or disrupting
physical operations occur through means like jamming and node tampering. The network
layer encounters threats that interrupt the routing of data, including routing and sybil
attacks, which affect the network’s integrity. Application layer attacks aim at the user
interface, deploying malware and phishing tactics to exploit software vulnerabilities.

From our primary investigation, it appears that multilayer IoT attacks mainly consist
of Encryption Attacks, DoS/DDoS attacks, replay attacks, and Malicious Code Injection
Attacks [9,10]. Encryption Attacks refer to a group of attacks that compromise the IoT’s
encryption methods with techniques like side channelling, cryptanalysis, and MITM at-
tacks. Side Channel Attacks exploit encryption processes across loT layers, while MITM
attacks intercept communications to control network traffic. Cryptanalysis Attacks involve
attempts to decrypt messages without the encryption key, and Eavesdropping Attacks
capture data via insecure channels, compromising privacy and confidentiality.

DDoS attacks aim to flood servers with overwhelming traffic, these attacks disrupt
services, as seen in ICMP, UDP, HTTP, and SYN flooding. These attacks often involve
botnets, a network of compromised devices, posing a severe threat to IoT infrastructure.
Replay attacks particularly impact the physical and network layers, where attackers re-
broadcast valid communication to gain unauthorised access or disrupt services. Code
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Injection Attacks like SQL injection and Cross-Site Scripting (XSS) inject malicious code into
IoT nodes, impacting both physical and application layers, and posing a threat to system
functionality to gain unauthorised access.
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RF Interface
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Figure 1. Taxonomy of multilayer IoT attacks.

2. Literature Review

Several techniques have been developed so far for detecting and mitigating multilayer
attacks in wireless multi-hop networks. Refs. [9-11] have focused on detecting attacks
such as packet dropping, route misdirection, DDoS, and MITM attacks, with approaches
ranging from cross-layer interactions to behaviour-based anomaly detection techniques.
The authors in [12] have advanced these techniques by combining device-driver packet
filters and remote firewalls to mitigate DDoS attacks. A study conducted by the authors
in [13] used a distributed mobile agents approach to detect multilayer packet-dropping
attacks in mobile ad hoc networks (MANET) and used NSv2 software to implement
their approach.

Alongside other traditional approaches, the application of machine learning (ML) in
detecting IoT attacks has been evidenced by researchers. For example, the authors in [14]
proposed a machine learning-based system for detecting DDoS attacks in IoT environments,
employing supervised learning models such as Decision Trees (DT) and manual feature
selection based on the attack type. Their work demonstrates the potential of machine
learning algorithms in accurately detecting various DDoS attacks with an accuracy of
around 97% in IoT networks. The authors of [15] proposed a semi-supervised machine
learning model named Learning-Driven Detection Mitigation (LEDEM), designed to detect
DDoS attacks in IoT networks by leveraging cloud and SDN technologies. Their model
identifies DDoS attacks with an accuracy rate of 96.28%. A study conducted by the authors
in [16] introduced a hybrid machine learning system that combines Random Forest (RF) for
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feature selection with Classification and Regression Trees (CART) for classifying various
types of IoT network attacks, such as wormholes, shellcodes, DoS, and backdoors. Tested
on the UNSW-NB15 dataset, their approach achieved an accuracy of 95.37%. The authors
in [17] proposed a framework based on the NSL-KDD dataset to detect cyber-attacks
such as Probe, U2R, R2L, and DDoS. The authors demonstrated the effectiveness of their
framework through experiments, including a real smart building scenario, achieving a
detection accuracy of anomalies at 99.71% using one-class SVM. Although the ML models
have achieved high success in detecting one type of multilayer attack, which is the DoS
attack, they face challenges in identifying different attack types. Also, the author’s use of an
outdated dataset (the NSL-KDD) makes their models less suitable for modern IoT networks.

The effectiveness of the proposed solutions for securing MANET is demonstrated
using NS2 simulations. However, real-world IoT environments may present unforeseen
challenges not captured by simulation tools, such as interference and more complex attack
scenarios. Behaviour-based systems often require significant time and computational
resources to continuously update training data and may not quickly adapt to new or
evolving attack patterns, which are common in IoT environments.

Furthermore, remote firewalls and packet filters primarily focus on network-layer
attacks and overlook other dimensions of multilayer attacks, such as those targeting the
application or perception layers. These approaches are also insufficient to protect against
internal threats that have already bypassed the network perimeter. The distributed nature of
mobile agents might introduce latency in detection, which is critical for real-time responses
in IoT systems.

2.1. Feature Selection

By investigating feature selection methods, we aim to reduce the computational pro-
cess for training machine learning models with minimum features by filtering out noise in
the data and focusing on the most relevant information. Researchers have explored differ-
ent wrapper and filter feature selection methods, such as the bijective soft set technique,
correlation, fast-based-correlation feature (FCBF) algorithm, Information Gain (IG), and
Gain Ratio (GR), which have proven beneficial in accurately identifying botnet, DoS, DDoS,
and MITM attacks in IoT networks.

For example, ref. [18] focused on detecting botnet attacks in IoT networks using
a wrapper feature selection method called the bijective soft set technique, introducing
a novel metric named CorrACC. Their approach analysed the use of machine learning
classifiers on the Bot-IoT dataset, and was proven to be successful with Decision Trees and
Random Forest classifiers, achieving over 95% accuracy with the selection of seven key
features. Further, ref. [19], applied Gain Ratio and Information Gain to detect DoS and
DDoS attacks, reaching an impressive 99% accuracy and detection rate using 16 features
on the BoT-IoT dataset and 19 features on the KDD Cup 1999 dataset. Similarly, ref. [20]
assessed multiple machine learning algorithms to predict MITM, DoS, and scan attacks,
using a correlation technique with a threshold of 0.6 for feature selection that yielded high
accuracy detection using Decision Trees, and high Area Under the Curve (AUC) scores
using Random Forests. Additionally, ref. [21] introduced a feature selection approach using
Gain Ratio and Information Gain, coupled with mathematical techniques like intersection
and union rules, to extract the most relevant features. Their method effectively identified
relevant features for detecting DDoS and DoS attacks, resulting in high accuracy rates of
nearly 99.98%.

Although these existing feature selection methods can extract significant features
from datasets, it remains unclear which is the most effective. Also, each feature selection
method has its pros and cons; even the accuracy of those methods invariably depends on
the training dataset. Our primary aim is to ascertain the optimal number of significant
features, irrespective of all feature selection methods used, by incorporating multiple
feature selection methods in the decision-making process.
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2.2. Feature Weighting

To scrutinise significant features through feature selection methods, employing feature
weighting proves valuable when assigning scores/weights to each feature, indicating
its significance in detecting IoT attacks within a dataset. Research has been carried out
to develop advanced feature weighting methods for phishing site detection in smart
cities. Ref. [22] presented a novel feature weighting method using hybrid bio-inspired
algorithms, specifically Gray Wolf Optimization (GWO) and the Firefly Algorithm (FF).
This technique significantly enhances the performance of an ANN used for classification,
demonstrating a detection accuracy of 95.75%. In contrast, the Particle Swarm Optimization
(PSO)-based feature weighting method developed by [23] achieved 95% accuracy during
training and 93% accuracy in detection during testing, along with an impressive 98.4%
accuracy rate in locating untrustworthy sites. Both studies underscore the effectiveness of
employing feature weighting techniques in the domain of cybersecurity, particularly in
the detection of phishing sites in smart city environments. Complementing these studies,
ref. [24] focuses on IoT device security, employing a statistical aggregation (SA) and multi-
objective optimisation method (based on the ratio analysis) for feature weighting of security
authentication features. This method demonstrates a substantial accuracy improvement of
70% using the SA method. Moreover, the study conducted by [25] explains a combination
of rule-based techniques and Multi-Objective Particle Swarm Optimization for feature
selection. They also enhance attack detection in IoT-based wireless sensor networks by
employing an advanced Multiclass Support Vector Machines classifier. To validate the
effectiveness of their approach, the authors conducted experiments using the KDD "99
Cup and CIDD datasets that showcase that their methodology not only enhances intruder
detection accuracy but also effectively reduces false-positive rates.

In the existing state-of-the-art literature, studies focused on developing frameworks
that incorporated machine learning models for single-layer attack identification and have
demonstrated excellent performance [14,16,17]. However, to the authors” knowledge, there
is no comprehensive framework for leveraging machine learning models for detecting
multilayer attacks in a unified approach that both detects the occurrence of multilayer IoT
attack and classifies the type. Also, there is a gap in the research regarding feature selection
and weighting methods across diverse IoT environments and attack vectors, especially for
multilayer attacks. Also, there is a notable absence of discussion on incorporating human
expertise in the loop of feature selection and weighting processes, which could enhance
the interpretability and reliability of the detection models, especially in complex scenarios
where automated methods might struggle. Building on our established taxonomy of
multilayer IoT attacks as explained in our prior research [26,27], this novel Semi-Automated
Intrusion Detection System (SAIDS) aimed to detect and identify multilayer attacks in IoT
infrastructure. This approach compensates for the limitations of existing research that
mostly focuses on single-layer attacks while offering a comprehensive and innovative
approach to IoT multilayer attack detection methods:

1. The proposed approach comprises an ensemble feature analysis technique by combin-
ing multiple feature selection and feature weighting methods to identify the optimal
number of significant features from IoT datasets.

2. The SAIDS approach includes Human-Machine Teaming by utilising human expertise
in extracting feature selection and the tuning of data mining parameters to facilitate a
more robust approach to identifying attack patterns to enhance the system’s adapt-
ability and accuracy in detecting multilayer intrusions.

3. The SAIDS includes a unique visualisation tool that graphically represents how
individual features influence the detection process to guide researchers and developers
in understanding and selecting the minimum significant features.

4. The SAIDS employs a two-stage classification process where the first stage uses a
binary classifier to filter traffic into normal and abnormal categories whereas the
second stage applies multiclass classification to identify specific types of multilayer
attacks, enabling targeted mitigation strategies.
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The rest of this paper is organised as follows: Section 3 describes the proposed frame-
work of the semi-automated tool. Section 4 discusses the implementation of the proposed
approach SAIDS using the Edge-lloTset Dataset. Section 5 presents the results of our
experiments and further analysis. Section 6 concludes the findings and discusses possible
areas for future research.

3. Methodology

This section discusses the procedural methodology of the proposed framework, which
incorporates feature selection, feature weighting, and a semi-automated approach where
human expertise and machine learning algorithms work together, as illustrated in Figure 2.
This collaboration ensures that cybersecurity experts thoroughly analyse the output of the
semi-automated tool and provide essential feedback.

Databases Data Pre-Processing Feature Selection
—_—
Start All Features
l l Common
Features
| l Feature
l l l Selection

Common —_—
Features
I
Model Predection Human Interaction Classification of Attacks Feature Weighting
liExpert Feedback—;.{
Multilayer Detectiion and
Classification il WE
Identifying Optimal Features Based
on Accuracy
End |

Methods

l v

Significant of

Figure 2. Semi-Automated Intrusion Detection System (SAIDS).

A. Datasets Selection

The methodology starts with selecting data from various sources while considering
specific criteria. These criteria include IoT-specific datasets, datasets related to multilayer
attacks, and considerations for the maximum number of features that can be processed by
ML algorithmes.

B.  Data Pre-Processing

Pre-processing includes handling missing data and converting categorical data into a
numerical format understandable by ML algorithms through label encoding. It includes
scaling data on a common scale across all features. Also, it involves mitigating data
imbalances to avoid bias towards a particular class, which is common in cybersecurity
where attacks are rarer than normal events.

C. Feature Selection
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This process begins with the identification of features common to multilayer attacks.
Subsequently, various feature selection methods are applied to determine the most signifi-
cant of common features. This is because irrelevant or redundant features may increase
computational complexity, and sometimes negatively impact the model’s performance.

D. Feature Weighting

During this stage, weights are assigned to each of the selected features, aiding the
machine learning algorithms in prioritising the most significant features throughout the
learning process.

E. Machine Learning for Feature Selection

Machine Learning models were used to help with identifying the most important
features for both classification tasks, namely, binary and multiclass classifications.

F.  Identifying Optimal Features Based on Accuracy

A semi-automated tool is created for visualising the impact of sequentially adding
top-weighted features into ML classifiers. This tool aids in guiding the selection of the most
significant features that contribute to a higher accuracy rate. The visualisations assist the
feature selection for both binary classification and multiclass classification.

G. Human Interaction

The inclusion of human expertise in the SAIDS framework is crucial, firstly, for un-
derstanding the features and converting the semi-structured IoT data into structured data.
Additionally, cybersecurity experts interact with the semi-automated tool by selecting the
minimum number of significant features, which reduces the computational power required
and the detection time for multilayer attacks. Experts may also modify accuracy thresholds
or intervene in cases where the model encounters rare attack types that require specialised
knowledge. For instance, experts might adjust the weighting for underrepresented attack
types that the model misclassifies due to their rarity, thereby enhancing detection in less
common scenarios.

H. Models Predictions

The proposed framework incorporates two classification tasks: binary classification to
distinguish between normal IoT traffic or malicious attacks, and multi-classification, for
predicting multiple types of IoT attacks. If the IoT traffic is flagged as malicious multilayer
attacks, the system further investigates to identify the type of multilayer attack through
multiclass classification. Also, the system is designed to easily integrate and add classifiers
as needed. For the specific use case in this study, we utilised classifiers such as Decision
Tree, K-Nearest Neighbors, Naive Bayes, Random Forest, and Artificial Neural Networks
as they are suitable for this prototype.

4. Implementation of the Proposed Approach (SAIDS) for Multilayer IoT Attack
Detection Using the Edge-IloTset Dataset

The proposed methodology is implemented utilising the Edge-IloTset dataset, as
described in Figure 3.

A. Dataset:

In this research, the latest and most comprehensive benchmark IoT cybersecurity
dataset, the Edge-IloTset dataset, is utilised [28]. While previous studies have employed
this dataset to detect intrusions in IoT and industrial IoT systems [28-34] the detection and
classification of multilayer attacks is limited and not explored. Instead, most studies have
explored manual feature selection methods, with only one exception employing feature
selection. Additionally, a limited number of studies have investigated the tuning of the
hyperparameters of the models used.
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Figure 3. Implementation of SAIDS to Edge-IloTset Dataset.

The Edge-IloTset dataset is particularly well-suited for multilayer attack detection
due to its diverse range of attack types and comprehensive feature set. It contains data
from 14 distinct attack types, including DDoS, MITM, injection, and malware attacks,
which often span multiple layers of IoT architecture. This diversity allows SAIDS to
evaluate multilayer attacks by analysing cross-layer interactions and patterns associated
with these attacks. Furthermore, the dataset, generated from over 10 types of IoT devices,
including sensors and detectors, provides a realistic representation of heterogeneous IoT
environments where multiple device types are interconnected. The dataset’s 63 unique
features capture a broad range of attributes, from network and transport layer details to
application-level information, making it ideal for examining how multilayer attacks exploit
vulnerabilities across different layers in the IoT stack.

The following pseudocode explains the Implementation of the SAIDS to the Edge-
IIoTset Dataset in more detail. For each feature selection method, F_ranked[fs_method]
holds a list of features, ordered/ranked by their scores in descending order of importance
based on that specific feature selection method. Meanwhile, F_sorted is the final list of
features, sorted by their combined scores after averaging the scores across all selection
methods to assign a weight to each feature (See Algorithm).
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Algorithm: SAIDS

Input:

Output:

Begin:

End

Dataset D
Feature Set F = {f1, 2, ..., fM}
Top Features to Select T
Optimal Features F_opt
Best ML Model M_best
Step 1: Preprocess (D)
Step 2: F_common = IdentifyCommonFeatures(D)
Step 3: Initialise containers:
F_ranked = {}
F_normalized = {}
Scores_Sum = {}
F_combined = {}
Step 4: Feature Selection and Normalisation:
for each fs_method in [MI, IG, DTE, Chi2, PCA, RF]:
F_scores = FeatureSelection (D, F_common, method=fs_method)
F_ranked[fs_method] = SortFeatures (F_scores, descending=True)
F_normalised[fs_method] = Normalise(F_scores)
for each feature in F_normalised[fs_method]:
if feature not in Scores_Sum:
Scores_Sum{[feature] = F_normalised[fs_method] [feature]
else:
Scores_Sum{|feature] += F_normalised[fs_method] [feature]
F_weighted = F_sorted
Step 5: Calculate Combined Scores:
for feature in Scores_Sum:
F_combined[feature] = Scores_Sum|[feature] / len(F_normalised)
Step 6: Sort Features by Combined Scores:
F_sorted = SortFeatures (F_combined, descending=True)
Step 7: Model Training and Selection:
M_best_acc =0
F_opt=]]
M_best = None
for N in range (1, T+1):
F_subset = F_weighted [: N]
for M in [DT, KNN, NB, RE, ANNJ:
M_tuned = HyperparameterOptimisation (M, F_subset)
M_trained = Train (M_tuned, F_subset)
M_metrics = Test (M_trained, F_subset)
if M_metrics["accuracy’] > M_best_acc:
M_best_acc = M_metrics[ accuracy’]
M_best = M_trained
F_opt = F_subset
end if
end for
end for
Step 8: VisualiseImpact(F_opt)
Step 9: HumanExpertReview (F_opt, M_best)
Step 10: FinaliseModel (M_best, F_opt)
Return (F_opt, M_best)
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(a)

Multilayer Attacks

B.  Pre-Processing:

This stage focuses on preparing the “Edge-IloTset” dataset for analysis by removing
any missing or duplicate data. Also, we split the “frametime” feature into two separate
attributes: “frame.time_WithoutIP” and “frame.time_WithIP”. This division is essential
because the original attribute has both IP addresses and timestamps. This modification
increases the total count of features in the dataset from 63 to 64. Out of the 14 different types
of attacks present in the datasets, we chose to focus on multilayer-related attacks. This
means narrowing down the analysis to eight specific attacks: DDoS_TCP (DDoS TCP SYN
Flood), DDoS_UDP, DDoS_HTTP, DoS_ICMP, MITM (ARP and DNS Spoofing), Password
(Password Cracking), SQL injection, and XSS attacks. The distribution of the dataset’s
traffic can be seen in the following Figure 4a,b.

XSS attacks

Password

DDoS_TCP
MITM

SQL injectior

Normal

DDoS_HTTP

DDoS_UDP Dog_ICMp

(b)

Figure 4. Distribution of Traffic: (a) normal and multilayer attacks, (b) normal and attack types.

To ensure the consistency of analysis, we use the Z-score method for standardisation.
Also, to deal with the issue of imbalanced data distribution, we apply the Synthetic Minority
Over-sampling Technique (SMOTE) [35]. Lastly, the label encoder is used to convert
categorical data into numerical form inspired by [36].

C. Identifying common features:

This stage aims to identify the features that are commonly found in multilayer attacks.
This approach starts with iteration over the ‘attack_type’ feature to separate the data based
on the nature of the network activity. Following the categorisation, a list of attributes is
compiled corresponding to each type of attack. These features have diverse characteristics,
such as traffic volume, packet size, and distinct behavioural patterns that help distinguish
malicious traffic from normal traffic. We then proceeded to count the frequency of each
attribute’s occurrence. This quantification step aids in assessing the distribution of features
associated with each attack type. Attributes that appear more frequently suggest a pattern
that may be characteristic of a particular form of attack. Out of the initial 64 features, 34 are
identified as common features (excluding “label” and “Attack_type”), as shown in Table 1.
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Table 1. Thirty-four Common Features.
No. Feature Name No. Feature Name No. Feature Name
1 frame.time_WithoutIP 13 arp.dst.proto_ipv4 25 tcp.connection.rst
2 frame.time_WithIP 14 arp.opcode 26 tcp.connection.syn
3 ip.src_host 15 arp.hw.size 27 tcp.connection.synac
4 ip.dst_host 16 arp.src.proto_ipv4 28 tep.dstport
5 tep.len 17 http.request.method 29 tep.flags
6 tep.options 18 http.request.full_uri 30 tep.flags.ack
7 tep.payload 19 http.request.version 31 udp.stream
8 tcp.seq 20 http.response 32 http.file_data
9 tep.sreport 21 tep.ack 33 http.content_length
10 udp.port 22 tep.ack_raw 34 icmp.seq_le
11 udp.time_delta 23 tcp.checksum
12 dns.qry.name 24 tep.connection. fin

D. Feature Selection Methods:

By identifying and employing the most relevant features, models can be trained more
effectively to detect complex patterns associated with multilayer attacks in IoT systems [27].
Six feature selection methods were employed in this research to analyse the strength of the
relationship between each feature and the target variable, as illustrated in Figure 5. These
methods are Mutual Information (MI), Information Gain (IG), Decision Tree Entropy (DTE),
Principal Component Analysis (PCA), Chi-Square (Chi?), and Random Forest (RF). These
methods were chosen for their effectiveness in handling various data types, including
numerical and categorical variables. They allow us to capture both linear and non-linear
dependencies between variables and reduce the dimensionality of the feature space, thus
improving the efficiency of the classification algorithm [37].

In our analysis, we utilised a permutation test, a statistical method that assesses
the significance of the Mutual Information score by comparing it to scores derived from
data generated under the null hypothesis (where the features and the target variable are
independent) as shown in [38]. Consequently, we calculated p-values with the number of
permutations set at 1000 for robustness. Out of the 34 considered features, MI identified
26 as significant, highlighting features such as “frame.time_WithoutIP” and ‘tcp.dstport’
due to their strong relationship with the target variable. Conversely, features with p-values
greater than or equal to 0.05 are considered irrelevant and excluded from further analysis,

v a7

such as “tcp.connection.synack”, “arp.opcode”, “udp.time_delta”, “arp.src.proto_ipv4”,
“udp.port”, “http.file_data”, “tcp.connection.fin”, and “arp.hw.size”.

Using the DTE method, we found 7 out of 34 features to be significant, with “tcp.srcport
and “tcp.dstport” scoring the highest, suggesting their essential role in the classification process.
The results of Chi? showed that all features are important, with higher Chi? scores indicating
a stronger connection to the target. IG identified 31 out of 34 features as significant, leaving
out features such as “arp.hw.size”, “arp.src.proto_ipv4”, and “arp.opcode”, which did not
provide valuable information. PCA indicated that 33 out of 34 features are significant, with
“frame.time_WithoutIP” and “frame.time_WithIP” being the most influential in the reduced
feature space, and “icmp.seq_le” has been excluded as it does not contribute to classifying the
data. Finally, the RF method, which incorporates feature importance as part of its algorithm,

successfully identified 27 out of 34 features as significant.

’7
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Figure 5. Comparative Analysis of Feature Selection Methods Results for IoT Multilayer Attack
Detection. (a) Mutual Information Score, (b) P-values, (¢) Information Gain Score, (d) Decision Tree
Entropy Score, (e) Chi-Square Score, (f) PCA Score, (g) Random Forest Score.

E.  Feature Weighting:

Since each feature selection method has its strengths and weaknesses, we decided to
incorporate the benefits of the six feature selection methods discussed above and combine
their scores. The proposed approach aligns with the ensemble feature selection approach
presented in [37]. By combining the scores of various ranking methods, we can assign
weight to the features to make the final feature selection more robust and less influenced
by any single ranking method.

In our approach, the scores obtained from the six feature selection methods are first
normalised using the Min-Max normalisation technique to ensure comparability. The
normalised scores from all feature selection methods are then combined to calculate a final
score for each feature. The combined score is calculated using the arithmetic mean which
averages the normalised scores from the feature selection methods.

As a result, features are ranked based on their combined scores, with higher scores
indicating greater importance. Lastly, each feature is assigned a weight equal to its nor-
malised score as shown in Figure 6. They show that “tcp.srcport” has the highest weight of
around 0.7, followed by “tcp.dstport” at around 0.62 and “frame.time_WithoutIP” at 0.54.

Then, the top-weighted features were added one after another for both binary and
multiclass classification to identify the most significant features. Figures 7-10 illustrate the
model’s testing accuracy using various feature sets, ranging from 1 to 34, and the original
62 features of the Edge-IloTset dataset.

e  Binary classification:

Figure 7 presents the testing accuracies for ML models (DT, KNN, NB, RF, and ANN)
for binary classification. Each model’s performance varies across different feature sets, with
a colour scale from red to green indicating accuracy levels. Red represents lower accuracy,
while green represents higher accuracy. Among these models, the KNN model consistently
performs better than the others in this task.

The detailed performance of KNN is shown in Figure 8, which highlights the binary
classification results. Initially, the KNN model achieves an accuracy of 91.05% for the first
feature set. As additional features are incorporated, the accuracy significantly improves,
reaching nearly perfect performance (around 100%) for feature sets 2 to 13. This suggests
that these features are highly informative for the binary classification task. However, after
feature set 13, there is a noticeable decline in accuracy to approximately 98%. This reduction
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could be due to the introduction of noise or irrelevant information from the additional
features, which can confuse the model and decrease its performance.

e  Multiclass Classification:

Figure 9 mirrors the structure of Figure 7 but focuses on multiclass classification. It
demonstrates that the KNN model again outperforms the other models, achieving high
accuracy. To delve deeper into the KNN model’s performance in multiclass classification,
Figure 10 is presented. The testing accuracy starts at a low of 52% with only one feature
and increases significantly as more features are added, reaching a peak at the nine-feature
set with an accuracy of around 96%. After the nine-feature set, there is a notable drop in
accuracy at feature set 10. A slight recovery is seen at the 13-feature set with an accuracy of
90%, followed by another drop. From feature set 14 onward, the accuracy stabilises within
the mid-85% range, with minor increases but no return to the peak levels seen with feature
sets 9 or 13.
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Figure 6. Feature Weights Analysis.
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Figure 7. Model accuracies for binary classification across different feature sets.
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Figure 9. Model accuracies for multiclass classification across different feature sets.



Sensors 2024, 24, 8121

17 of 31

—4— KNN Testing Accuracy

80 A

Accuracy (%)

60

50

12345678 91011121314151617181920212223242526272829303132333462
Feature Sets

Figure 10. Visualising Multiclass Classification using KNN.

5. Results Analysis and Discussion

In this section, our focus was on evaluating the effectiveness of the five classification
models in accurately categorising IoT network traffic into normal traffic and multilayer
attacks. Each model is optimised through a hyperparameter tuning process known as
randomised search, aimed at enhancing their ability to detect multilayer attacks in IoT
networks [23].

A.  Output of Semi-automated Tool for Identifying Multilayer Attacks

We evaluated the ML models using the 34 common features and all the 62 features
identify multilayer attack types. We discovered that with the 34 common features as shown
in Figure 11, the RF model failed to detect XSS attacks, as evidenced by zero values in
precision, recall, and f-measure. Both NB and ANN demonstrated lower performance in
detecting XSS attacks. Additionally, NB demonstrated lower performance in detecting SQL
injection attacks and ANN demonstrated lower performance in detecting password attacks.

In a similar evaluation using all 62 features for classifying multilayer attack types, as
shown in Figure 12, we found that RF, DT, and ANN failed to distinguish SQL injection. RF
failed to distinguish XSS attacks as well. NB also showed poor performance in detecting
XSS attacks and SQL injection. These performance issues with the RE, NB, DT and ANN
models in detecting specific multilayer IoT attacks (DDoS_HTTP, XSS, SQL injection, and
password attacks) using both the full 62 features and the reduced 34 common features
suggest a need for refinement.

Appendices A and B present the analysis of various machine learning models’ perfor-
mance using the 13-feature set and the 9-feature set. The 13-feature set includes the following
features: “frame.time_WithoutIP”, “frame.time_WithIP”, “ip.src_host”, “ip.dst_host”, “tcp.len”,
“tcp.options”, “tcp.payload”, “tcp.seq”, “tcp.srcport”, “tcp.ack”, “tcp.ack_raw”, “tcp.dstport”,
and “tcp.flags”. The nine-feature set is a subset of these, comprising “frame.time_WithoutIP”,
“frame.time_WithIP”, “ip.src_host”, “ip.dst_host”, “tcp.len”, “tcp.options”, “tcp.payload”,
“tcp.seq”, and “tcp.srcport”.



Sensors 2024, 24, 8121

18 of 31

SQL injection
XSS attacks
100 W Password
é 90 DDoS_HTTP
o 80
& 70
T 60
g 50
v 40
= 30
20
10
0 |
Pr Rc f1 Pr Rc f1 Pr Rc f1
Naive Bayes Random Forest Artificial Neural Network

Figure 11. Performance analysis of ML models on 34 common features for multilayer attack identification.
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Figure 12. Worst-case analysis of ML models on all 62 features for multilayer attack identification.

The results show that the models perform well with both feature sets for DDoS attack
types (TCP, UDP, HTTP, and ICMP). This indicates that the critical features for detecting
these attacks are included in both the 9-feature and 13-feature sets. However, the models
do not perform well for password, MITM, XSS, and SQL injection-related attacks, as well
as for normal traffic detection.

For the 13-feature set (Appendix A), the NB model displays notably low precision,
recall, and F1-score values—2%, 4%, and 3%, respectively—in detecting XSS attacks, indi-
cating a high rate of false positives and false negatives. The testing accuracy is 72%, and
the AUC shows a reasonable score in training but experiences a drop in testing from 76%
to 68%. This decline could suggest potential overfitting.

In contrast, as demonstrated in (Appendix B), the 9-feature set exhibits significantly
poorer performance across several models, such as NB, RF, and ANN, in distinguishing
normal traffic, XSS, SQL injection, and password attacks compared to the 13-feature set.
While all the metric values for NB in detecting XSS remain very low, they are consistent
with those of the 13-feature set. Additionally, for NB, in detecting SQL injection, despite
high AUC scores of 97% for both training and testing and an accuracy of 90%, the precision,
recall, and f-measure drop to 0. This indicates that the model failed to identify any true
positives for SQL injection attacks. For RF, despite high AUC scores for both training and
testing and high accuracy in distinguishing normal traffic, XSS, and SQL injection attacks,
the model achieved 0% in precision, recall, and f-measure. This suggests that the model
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failed to identify any true positives for these attacks. The ANN model also exhibits low
precision, recall, and f-measure values at 35%, 13%, and 19%, respectively, indicating poor
performance in identifying XSS attacks, and 26%, 11%, and 16%, respectively, in identifying
password attacks.

Although the 9-feature set is generally sufficient for detecting DDoS (TCP, UDP, HTTP,
and ICMP) and MITM-related attacks, it is less effective in detecting normal traffic, pass-
word, SQL injection, and XSS attacks compared to the 13-feature set. This highlights the
importance of including specific features that are critical for identifying normal traffic and
more sophisticated attacks such as password, SQL injection, and XSS. The AUC scores for
the 13 features are quite high for both training and testing across all models, suggesting
good model performance. However, the drop in AUC from training to testing for NB
observed in both feature sets may indicate overfitting, particularly for XSS attacks.

In summary, the application of the SAIDS demonstrates that the 13-feature set is
more adept at detecting and identifying multilayer attacks compared to the 9-feature set,
34 common features, and all 62 features.

B.  Further Evaluation of ML Models for IoT Multilayer Attack Detection Using 13-Feature Set

When comparing the models in Table 2, KNN stands out as the top performer, achiev-
ing perfect scores across all metrics for both normal and multilayer attack detection. Specif-
ically, it achieved precision, recall, F1-score, accuracy, and AUC values ranging from 99%
to 100% for both categories, indicating exceptional reliability and performance.

RE DT, and ANN models also exhibit strong performance, with high values across
all metrics ranging from 79% to 100%, making them reliable choices for IoT multilayer
attack detection. However, ANN shows slightly lower precision and accuracy for normal
traffic at 68% and 83%, respectively. NB, while stable in terms of AUC, shows the lowest
performance overall, indicating that it may not be the best choice for this application.

Table 2. Comparative analysis of IoT multilayer attacks detection using different ML models.

ML Model Metric Normal Multilayer
Precision 0.34 0.97
Recall 0.51 0.44
fl-score 0.54 0.61
NB
Accuracy 0.56 0.56
AUC Training 0.92 0.92
AUC Testing 0.92 0.92
Precision 0.83 0.98
Recall 0.95 0.94
fl-score 0.88 0.96
RF
Accuracy 0.94 0.94
AUC Training 0.98 0.98
AUC Testing 0.98 0.98
Precision 0.79 1.00
Recall 1.00 0.92
fl-score 0.88 0.96
DT
Accuracy 0.93 0.93
AUC Training 0.98 0.98

AUC Testing 0.97 0.97
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Table 2. Cont.
ML Model Metric Normal Multilayer
Precision 0.68 0.99
Recall 0.97 0.86
ANN f1-score 0.80 0.92
Accuracy 0.83 0.99
AUC Training 0.99 0.99
AUC Testing 0.99 0.99
Precision 1.00 1.00
Recall 1.00 1.00
KNN f1-score 1.00 1.00
Accuracy 0.99 0.99
AUC Training 0.99 0.99
AUC Testing 0.99 0.99

Figure 13 highlights the key performance indicators for each machine learning model
across different attack types. In this figure, KNN and RF generally show the highest
precision across most attack types (Figure 13a), with KNN achieving nearly perfect precision
for all attack types (ranging from 70% to 100%). NB shows a lower precision of 2% for XSS
attacks, suggesting that this area requires significant improvement. Such failings have a
significant impact on the practical deployment of the model, resulting in numerous false
alerts or missed attacks.

KNN and RF again lead in recall (Figure 13b), indicating their effectiveness in identify-
ing true positive instances of attacks. ANN shows a high recall for most attack types, though
it dips for normal traffic, DDoS_HTTP, and password attacks, achieving 44%, 30% and 30%,
respectively. NB shows a lower recall of 4% for XSS attacks. KNN consistently achieves
high Fl-scores (Figure 13c) across all attack types, followed by RE, DT, and ANN. NB shows
lower F1-scores for XSS attacks, indicating a balance between precision (Figure 13a), recall
(Figure 13b) and F1-scores (Figure 13c) that needs improvement.

All the models demonstrate good testing accuracy across all attack types ranging
from 72% to 100% (Figure 13d). KNN outperforms the other models, with an accuracy of
100% in detecting DDoS_UDP and MITM, 99% in detecting normal traffic, DDoS_TCP, and
DDoS_ICMP, 97% in detecting XSS, and 94% in detecting DDoS_HTTP, SQL injection, and
password attacks.

The AUC values (Figure 13e,f)) for both training and testing are high for KNN, RE, DT,
and ANN across all attack types, suggesting strong model performance. NB shows stable
AUC but lower values for XSS attacks.

Figure 14a displays the KNN model’s accurate classification of normal traffic and
multilayer attacks. The confusion matrix indicates that a total of 7364 instances were
predicted as ‘Normal” and 24,179 as ‘Multilayer Attacks’. Only 18 instances were incorrectly
labelled as "‘Multilayer Attacks’, and 26 instances were incorrectly classified as ‘Normal'.
This means that the model has a high true positive rate, suggesting it is effective at detecting
‘Multilayer Attacks’. The relatively low rates of false positives and false negatives indicate
that the model is also capable of correctly identifying ‘Normal’ traffic. Figure 14b relates
to multiclass classification, where the KNN model identifies various types of multilayer
attacks. It accurately predicted normal traffic (7333 samples), DDoS_TCP (3059 samples),
DDoS_UDP (4416 samples), DDoS_HTTP (2270 samples), DoS_ICMP (4187 samples), SQL
injection (2472 samples), XSS (2835 samples), MITM (358 samples), and password attacks
(1606 samples).
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Figure 13. (a) precision, (b) recall, (c) Fl-score, (d) testing accuracy, (e) AUC training and (f) testing
for 13-feature set.

C. Comparative Analysis of IoT Attack Detection Using Edge-IloTset Dataset

Table 3 presents a comparative analysis of the proposed SAIDS with recent related
works [28-34] that utilised the Edge-IloTset dataset for IoT attacks detection. The proposed
SAIDS stands out by incorporating multilayer IoT attack detection, which is not addressed
by the other studies. Additionally, this approach uses a significant 13 features, as illustrated
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in Figure 15, which is fewer than the features used by most other studies, which range from

20 to 63 features.
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Figure 14. Confusion Matrix using KNN for 13 feature set: (a) attack detection, (b) attack identification.
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Table 3. Comparison between proposed model and relevant works on Edge-IloTset dataset.
Multilayer Feature Feature Hyper-Parameter .
Ref. Models Detection Features Selection Weighting Opt. Classify
Keserwani et al. CatBoost, Binary,
[29] XGBoos, RF, DT No 20 Manual No No Multiclass
Inception Time, .
Tareq et al. [30] DenseNet No All 63 _ No Yes Multiclass
Khacha etal. [31]  CNN-LSTM No - - No Yes Binary,
Multiclass
J48, PART,
Al Nuaimi et al. BayesNets, Binary,
[32] AdaBoos, No All 63 - No Yes Multiclass
LogitBoost, ASC
Samin et al. [33] NB, DT No 46 Manual No No Multiclass
Ullah et al. [34] MAGRU No 31 XGBoost No Yes Multiclass
RF, DT, SVM, Binary,
Ferrag et al. [28] KNN, DNN No 46 Manual No Yes Multiclass
The proposed SVM, DT, KNN, MI, DTE, IG, Binary,
method RE, ANN Yes 13 RE, Ch2 Yes Yes Multiclass
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Figure 15. Intersection of all features, 34 common features, and 13 feature sets.

Table 4 provides a comprehensive overview of existing datasets used particularly
in Intrusion Detection Systems for detecting IoT cyber-attacks. As shown in the table,
widely used datasets in network security research, such as KDDCUP 1999, NSL-KDD,
UNSW-NBI15, CICIDS2017, and CICDD0S2019, are not specific to IoT systems. In contrast,
the BoT-IoT, ToN-IoT, Edge-IloT, and BoTNeT-IoT datasets are specifically designed for
IoT systems, containing the unique characteristics of IoT traffic. The BoT-IoT dataset,
introduced in 2018, contains 45 features and includes data on DoS and DDoS attacks from
multilayer attacks. Similarly, the BoTNeT-IoT dataset, also released in 2018, is limited to
only two botnet attacks (Mirai and Gafgyt) and includes just 23 features. On the other hand,
the ToN-IoT dataset, introduced in 2020, represents a more comprehensive IoT dataset
with 44 features, designed to capture a broad range of IoT traffic and various types of
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multilayer attacks. Lastly, the Edge-IloTset dataset, released in 2022, is particularly focused
on Industrial IoT (IIoT) environments, providing 61 features that address the complexity of
real IoT device traffic and include most of the multilayer attacks.

Table 4. Summary of datasets used in IoT intrusion detection systems.

Dataset Reference Year IoT Specific Total Features  Attack Type
KDDCUP 99 Vibhute et al. [39] 1999 No 41 Single
NSL-KDD Aljawarneh et al. [40] 2009 No 43 Single
UNSW-NB15 Ahmad, Z. et al. [41] 2015 No 49 Single
CICIDS2017 Salman et al. [42] 2017 No 80 Single
BoT-IoT Peterson et al. [43] 2018 Yes 45 Multilayer
BoTNeT-IoT [44] 2018 Yes 23 Multilayer
CICDDo0S2019 Rehman et al. [45] 2019 No 86 Single
ToN-IoT Alsaedi et al. [46] 2020 Yes 44 Multilayer
Edge-IloTset Ferrag et al. [28] 2022 Yes 61 Multilayer

6. Conclusions

In conclusion, this paper addresses a crucial gap in the literature for ML-based multi-
layer attack detection frameworks, where existing work focuses on specific types of attacks,
and utilises outdated datasets, but lacks dynamic, adaptive approaches. Our research
introduces the SAIDS, a comprehensive framework designed to detect and identify multi-
layer attacks. This framework draws upon an established taxonomy of multilayer attacks,
integrates efficient feature selection, feature weighting, normalisation, and visualisation,
and incorporates human expertise with machine learning algorithms to tackle these attacks
using an optimal number of significant features. By utilising the Edge-IloTset dataset as a
case study to implement the SAIDS framework, we identified 13 significant features critical
for the detection and classification of multilayer attacks.

The SAIDS framework’s effectiveness is demonstrated by the KNN model’s high accu-
racy in both binary and multiclass classification, achieving over 94% accuracy in detecting
multilayer attacks. Acknowledging the observed limitations, particularly the underperfor-
mance of certain models like Naive Bayes in detecting XSS attacks due to its classification
approach being less suited to complex attack types, it is evident that our approach could
benefit from the adoption of more advanced methodologies. A significant extension to
our work would be the incorporation of Continuous Machine Learning (CML) as utilised
by [47,48]. Incorporating CML into SAIDS would enable the system to automatically up-
date its understanding of multilayer attack patterns, reducing the likelihood of overfitting
seen with static datasets and enhancing the detection of multilayer threats. CML could also
lead to the development of more robust feature selection and weighting algorithms that
dynamically adjust to the changing landscape of IoT multilayer threats.

Future research directions could also involve deploying the SAIDS in real-life scenarios
to validate and refine the system further. This would provide invaluable insights into the
system’s real-world performance, revealing unforeseen challenges and enabling the design
of solutions to meet practical needs more effectively.
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DDoS Distributed Denial of Service Attack
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LSTM Long Short-Term Module
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MI Mutual Information
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ML Machine Learning
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PSO Particle Swarm Optimization
R2L Remote-to-Local

Rc Recall

RF Random Forest

RFID Radio Frequency Identification
SA Statistical Aggregation

SAIDS Semi-Automated Intrusion Detection System
SMOTE  Synthetic Minority Oversampling Technique

SVM Support Vector Machine

SQL Structured query language
TCP Transmission Control Protocol
U2R User-to-Root

ubDpr User datagram protocol
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Appendix A

Analysis of ML models’ performance on 13-feature sets for multilayer attack identifi-
cation. Yellow highlights indicate worst prediction rates.

Algorithm Metric Normal DDoS_TCP DDoS_UDP DDoS_HTTP DDoS_ICMP SQL XSS MITM Password

Precision 0.99 1.00 1.00 0.36 0.96 0.84 0.02 1.00 1.00
Rc 0.22 0.63 1.00 0.99 1.00 0.42 0.04 1.00 1.00
f1 0.36 0.77 1.00 0.53 0.98 0.56 0.03 1.00 1.00
NB Acc. 0.81 0.96 1.00 0.82 0.99 0.93 0.72 1.00 0.99
AUC 091 0.99 1.00 0.96 0.99 0.94 0.76 1.00 0.99
Training
AU.C 0.90 0.99 1.00 0.96 0.99 0.94 0.68 1.00 0.99
Testing
Pr 0.79 0.84 1.00 1.00 0.99 0.60 0.59 0.72 1.00
Re 0.73 0.60 1.00 1.00 1.00 0.98 0.46 1.00 1.00
f1 0.76 0.70 1.00 1.00 0.99 0.74 0.52 0.83 1.00
RF Acc. 0.89 0.95 1.00 0.99 0.99 0.93 0.91 0.99 0.99
AUC 0.94 0.95 1.00 0.99 1.00 0.93 0.90 0.99 1.00
Training
AU.C 0.94 0.96 1.00 0.99 1.00 0.93 0.90 0.99 0.99
Testing
Pr 0.96 0.99 1.00 0.85 1.00 0.30 0.66 0.71 1.00
Re 0.60 0.65 1.00 0.38 0.99 1.00 0.34 1.00 0.97
f1 0.74 0.78 1.00 0.52 0.99 0.47 0.45 0.83 0.98
DT Acc. 0.90 0.96 0.99 0.93 0.99 0.77 0.92 0.99 0.99
AUC 0.92 0.99 1.00 0.86 1.00 0.90 0.88 1.00 0.82
Training
AU.C 091 0.98 1.00 0.87 1.00 0.93 0.85 1.00 0.83
Testing
Pr 0.93 0.85 1.00 0.45 0.99 0.58 0.36 0.97 0.38
Rc 0.44 0.88 1.00 0.30 0.99 0.89 0.82 1.00 0.30
f1 0.60 0.86 1.00 0.36 0.99 0.70 0.50 0.98 0.33
ANN Acc. 0.84 0.96 0.98 0.86 0.99 0.87 0.83 0.99 0.87
AUC 0.93 0.99 1.00 0.87 0.99 0.95 0.91 1.00 0.87
Training
AU.C 0.93 0.98 1.00 0.85 0.99 0.95 0.87 1.00 0.85
Testing
Pr 1.00 1.00 1.00 0.70 1.00 0.70 0.85 1.00 0.79
Re 1.00 1.00 1.00 0.72 1.00 0.80 0.95 1.00 0.54
f1 1.00 1.00 1.00 0.71 1.00 0.75 0.89 1.00 0.64
KNN Acc. 0.99 0.99 1.00 0.94 0.99 0.94 0.97 1.00 0.94
AUC 0.99 1.00 1.00 0.98 1.00 0.98 0.99 1.00 0.97
Training
AUC

. 0.99 0.99 1.00 0.88 0.99 0.95 0.97 1.00 0.82
Testing
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Appendix B

Analysis of ML models performance on 9-feature sets for multilayer attack identifica-
tion. Yellow highlights indicate worst predictions.

Alg Metric Normal DDoS_TCP DDoS_UDP DDoS_HTTP DDoS_ICMP SQL XSS MITM Password
Precision 0.99 1.00 1.00 0.32 0.96 0.00 0.02 1.00 1.00
Rc 0.17 0.65 1.00 0.99 1.00 0.00 0.04 1.00 1.00
f1 0.29 0.79 1.00 0.48 0.98 0.00 0.03 1.00 1.00
NE Acc. 0.80 0.96 1.00 0.78 0.99 0.90 0.72 1.00 0.99
AUC Training 0.92 0.99 1.00 0.99 0.99 0.97 0.76 1.00 0.99
AUC Testing 0.92 0.99 1.00 0.99 0.99 0.97 0.68 1.00 0.99
Pr 0.00 1.00 1.00 0.19 0.99 0.00 0.00 0.21 1.00
Re 0.00 0.60 1.00 1.00 1.00 0.00 0.00 1.00 1.00
f1 0.00 0.75 1.00 0.32 1.00 0.00 0.00 0.34 1.00
RE Acc. 0.76 0.96 1.00 0.58 0.99 0.90 0.90 0.95 0.99
AUC Training 0.78 0.89 1.00 0.79 1.00 0.79 0.77 0.99 0.99
AUC Testing 0.77 0.88 1.00 0.76 1.00 0.76 0.73 0.99 0.99
Pr 0.98 1.00 0.99 0.92 1.00 0.67 0.64 1.00 0.93
Rc 0.92 1.00 1.00 0.58 1.00 1.00 0.95 1.00 0.51
f1 0.95 1.00 1.00 0.72 1.00 0.80 0.76 1.00 0.66
Pt Acc. 0.97 1.00 0.99 0.95 1.00 0.95 0.94 1.00 0.95
AUC Training 0.99 1.00 0.99 0.97 1.00 0.96 0.97 1.00 0.96
AUC Testing 0.99 1.00 1.00 0.97 1.00 0.97 0.97 1.00 0.97
Pr 0.61 0.40 1.00 0.23 0.95 0.53 0.35 0.88 0.26
Re 0.43 0.69 0.99 0.27 1.00 1.00 0.13 1.00 0.11
f1 0.51 0.51 1.00 0.25 0.97 0.70 0.19 0.94 0.16
ANN Acc. 0.80 0.87 0.99 0.83 0.99 091 0.89 0.99 0.88
AUC Training 0.86 0.88 1.00 0.78 0.99 0.95 0.90 1.00 0.83
AUC Testing 0.86 0.87 1.00 0.76 0.99 0.90 0.87 1.00 0.80
Pr 1.00 1.00 1.00 0.83 0.99 0.87 091 1.00 1.00
Rc 1.00 0.99 1.00 0.81 1.00 0.87 0.97 1.00 0.98
f1 1.00 0.99 1.00 0.82 1.00 0.87 0.94 1.00 0.99
KNN Acc. 0.99 0.99 1.00 0.96 0.99 0.97 0.98 1.00 0.99
AUC Training 1.00 1.00 1.00 0.99 1.00 0.99 0.99 1.00 1.00
AUC Testing 0.99 0.99 1.00 0.96 0.99 0.98 0.99 1.00 0.99
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