References | 1. WWF-UK.: Hidden waste: The scale and impact of food waste in primary production.WWF. Available at: https://www.wwf.org.uk/our-reports/hidden-waste (2022). 2. Rose, D.C. and Bhattacharya, M.: Adoption of autonomous robots in the soft fruit sector:Grower perspectives in the UK. Smart Agricultural Technology 3, p.100118 (2023). 3. Nasini, L., & Proietti, P.: Olive harvesting. The Extra‐Virgin Olive Oil Handbook. John Wiley & Sons, pp. 87-105 (2014). 4. Dimeas, F., Sako, D. V., Moulianitis, V. C., & Aspragathos, N. A.: Design and fuzzy control of a robotic gripper for efficient strawberry harvesting. Robotica 33(5), 1085-1098 (2015). 5. Muscato, G., Prestifilippo, M., Abbate, N., & Rizzuto, I.: A prototype of an orange picking robot: past history, the new robot and experimental results. Industrial Robot: An International Journal 32(2), 128-138 (2005). 6. Birglen, L., & Schlicht, T.: A statistical review of industrial robotic grippers. Robotics and Computer-Integrated Manufacturing 49, 88-97 (2018). 7. Mazzolai, B., Mondini, A., Del Dottore, E., Margheri, L., Carpi, F., Suzumori, K., ... & Lendlein, A.: Roadmap on soft robotics: multifunctionality, adaptability and growth without borders. Multifunctional Materials 5(3), 032001 (2022). 8. Polygerinos, P., Correll, N., Morin, S. A., Mosadegh, B., Onal, C. D., Petersen, K., ... & Shepherd, R. F.: Soft robotics: Review of fluid‐driven intrinsically soft devices; manufacturing, sensing, control, and applications in human‐robot interaction. Advanced Engineering Materials 19(12), 1700016 (2017). 9. Hayashi, S., Shigematsu, K., Yamamoto, S., Kobayashi, K., Kohno, Y., Kamata, J., & Kurita, M.: Evaluation of a strawberry-harvesting robot in a field test. Biosystems engineering 105(2), 160-171 (2010). 10. Yaguchi, H., Nagahama, K., Hasegawa, T., & Inaba, M.: Development of an autonomous tomato harvesting robot with rotational plucking gripper. In: IEEE/RSJ international conference on intelligent robots and systems, pp. 652-657. IEEE, Daejeon, Sotuh Korea (2016). 11. Birrell, S., Hughes, J., Cai, J. Y., & Iida, F.: A field‐tested robotic harvesting system for iceberg lettuce. Journal of Field Robotics 37(2), 225-245 (2020). 12. Galley, A., Knopf, G. K., & Kashkoush, M.: Pneumatic hyperelastic actuators for grasping curved organic objects. Actuators 8(4), p. 76 (2019). 13. Gafer, A., Heymans, D., Prattichizzo, D., & Salvietti, G.: The quad-spatula gripper: A novel soft-rigid gripper for food handling. In: 2020 3rd IEEE International Conference on Soft Robotics, pp. 39-45. IEEE, New Haven, CT, USA (2020). 14. Wang, Z., Or, K., & Hirai, S.: A dual-mode soft gripper for food packaging. Robotics and Autonomous Systems 125, 103427 (2020). 15. Lee, J. H., Chung, Y. S., & Rodrigue, H.: Long shape memory alloy tendon-based soft robotic actuators and implementation as a soft gripper. Scientific reports 9(1), 11251 (2019). 16. Hu, W., Mutlu, R., Li, W., & Alici, G. (2018). A structural optimisation method for a soft pneumatic actuator. robotics, 7(2), 24. 17. Hegde, C., Su, J., Tan, J. M. R., He, K., Chen, X., & Magdassi, S.: Sensing in soft robotics. ACS nano 17(16), 15277-15307 (2023). 18. Walker, J., Zidek, T., Harbel, C., Yoon, S., Strickland, F. S., Kumar, S., & Shin, M.: Soft robotics: A review of recent developments of pneumatic soft actuators. Actuators 9(1), p. 3 (2020). 19. Youn, J. H., Jeong, S. M., Hwang, G., Kim, H., Hyeon, K., Park, J., & Kyung, K. U.: Dielectric elastomer actuator for soft robotics applications and challenges. Applied Sciences 10(2), 640 (2020). 20. Plante, J. S., & Dubowsky, S.: On the performance mechanisms of dielectric elastomer actuators. Sensors and Actuators A: Physical 137(1), 96-109 (2007). 21. Tawk, C., Gillett, A., in het Panhuis, M., Spinks, G. M., & Alici, G.: A 3D-printed omnipurpose soft gripper. IEEE Transactions on Robotics 35(5), 1268-1275 (2019). 22. Venter, D., & Dirven, S.: Self morphing soft-robotic gripper for handling and manipulation of delicate produce in horticultural applications. In: 24th International Conference on Mechatronics and Machine Vision in Practice, pp. 1-6. IEEE, Auckland, New Zealand (2017). 23. Yirmibeşoğlu, O. D., Oshiro, T., Olson, G., Palmer, C., & Mengüç, Y.: Evaluation of 3D printed soft robots in radiation environments and comparison with molded counterparts. Frontiers in Robotics and AI 6, 40 (2019). 24. Ranasinghe, H. N., Kawshan, C., Himaruwan, S., Kulasekera, A. L., & Dassanayake, P.: Soft pneumatic grippers for reducing fruit damage during strawberry harvesting. In: 2022 Moratuwa Engineering Research Conference, pp. 1-6. IEEE, Moratuwa, Sri Lanka (2022). 25. Alici, G., Canty, T., Mutlu, R., Hu, W., & Sencadas, V.: Modeling and experimental evaluation of bending behavior of soft pneumatic actuators made of discrete actuation chambers. Soft robotics 5(1), 24-35 (2018). 26. Jahanbakhshi, A., Rasooli Sharabiani, V., Heidarbeigi, K., Kaveh, M., & Taghinezhad, E.: Evaluation of engineering properties for waste control of tomato during harvesting and postharvesting. Food science & nutrition 7(4), 1473-1481 (2019). 27. Rasmussen, M. H., Holler, K. R., Baio, J. E., Jaye, C., Fischer, D. A., Gorb, S. N., & Weidner, T.: Evidence that gecko setae are coated with an ordered nanometre-thin lipid film. Biology Letters 18(7), 20220093 (2022). 28. Stojiljković, D., Milošević, M., Ristić-Durrant, D., Nikolić, V., Pavlović, N. T., Ćirić, I., & Ivačko, N.: Simulation, analysis, and experimentation of the compliant finger as a part of hand-compliant mechanism development. Applied Sciences 13(4), 2490 (2023). |
---|