The impact of system transparency on analytical reasoning

Book chapter


Hepenstal, S., Zhang, L. and Wong, B. 2023. The impact of system transparency on analytical reasoning. in: CHI '23: CHI Conference on Human Factors in Computing Systems, Hamburg Germany, April 23 - 28, 2023 New York ACM.
AuthorsHepenstal, S., Zhang, L. and Wong, B.
Abstract

In this paper, we present the hypothesis that system transparency is critical for tasks that involve expert sensemaking. Artificial Intelligence (AI) systems can aid criminal intelligence analysts, however, they are typically opaque, obscuring the underlying processes that inform outputs, and this has implications for sensemaking. We report on an initial study with 10 intelligence analysts who performed a realistic investigation exercise using the Pan natural language system [10, 11], in which only half were provided with system transparency. Differences between conditions are analysed and the results demonstrate that transparency improved the ability of analysts to reason about the data and form hypotheses.

KeywordsSystem transparency; AI; Artificial intelligence; Pan natural language system
Year2023
Book titleCHI '23: CHI Conference on Human Factors in Computing Systems, Hamburg Germany, April 23 - 28, 2023
PublisherACM
Output statusPublished
Place of publicationNew York
ISBN9781450394222
Publication dates
Online19 Apr 2023
Print19 Apr 2023
Publication process dates
Deposited10 May 2023
Digital Object Identifier (DOI)https://doi.org/10.1145/3544549.3585786
Official URLhttps://dl.acm.org/doi/10.1145/3544549.3585786
JournalExtended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems
Journal citation(274), pp. 1-6
Permalink -

https://repository.canterbury.ac.uk/item/948q5/the-impact-of-system-transparency-on-analytical-reasoning

  • 45
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Investigating security issues (multilayer attacks) on IoT devices using machine learning
Al Sukhni, B., Manna, S., Dave, J. and Zhang, L. 2024. Investigating security issues (multilayer attacks) on IoT devices using machine learning.
Safeguarding IoMT: Semi-automated Intrusion Detection System (SAIDS) for detecting multilayer attacks
Al Sukhni, B., Manna, S., Dave, J. and Zhang, L. 2024. Safeguarding IoMT: Semi-automated Intrusion Detection System (SAIDS) for detecting multilayer attacks.
Exploring optimal set of features in machine learning for improving IoT multilayer security
Al Sukhni, B., Manna, S., Dave, J. and Zhang, Leishi 2023. Exploring optimal set of features in machine learning for improving IoT multilayer security. 2023 IEEE 9th World Forum on Internet of Things (WF-IoT). https://doi.org/10.1109/wf-iot58464.2023.10539376
A review of privacy-preserving federated learning, deep learning, and machine learning IIoT and IoTs solutions
Obarafor, Victor, Qi, Man and Zhang, L. 2023. A review of privacy-preserving federated learning, deep learning, and machine learning IIoT and IoTs solutions. in: 2023 8th IEEE International Conference on Signal and Image Processing (ICSIP) Wuxi, China IEEE. pp. 1074-1078
The impact of system transparency on analytical reasoning
Hepenstal, S., Zhang, L. and Wong, B.L.W. 2023. The impact of system transparency on analytical reasoning.
Machine learning-based solutions for securing IoT systems against multilayer attacks
Al Sukhni, B., Manna, S., Dave, J. and Zhang, L. 2022. Machine learning-based solutions for securing IoT systems against multilayer attacks. in: Singh Tomar, R., Verma, S., Kumar Chaurasia, B., Singh, V., Abawajy, J. H., Akashe, S., Hsiung, Pao-Ann and Prasad, R. (ed.) Communication, Networks and Computing Third International Conference, CNC 2022, Gwalior, India, December 8–10, 2022, Proceedings, Part I Cham Springer. pp. 140-153
Investigating the security issues of multi-layer IoMT attacks using machine learning techniques
Al Sukhni, B., Manna, S., Dave, J. and Zhang, L. 2022. Investigating the security issues of multi-layer IoMT attacks using machine learning techniques.
Designing a system to mimic expert cognition: An initial prototype
Hepenstal, Sam, Zhang, Leishi and William Wong, B. L. 2022. Designing a system to mimic expert cognition: An initial prototype. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 66 (1), pp. 2057-2061. https://doi.org/10.1177/1071181322661092
An analysis of expertise in intelligence analysis to support the design of human-centered artificial intelligence
Hepenstal, S., Zhang, L. and Wong, BL William 2021. An analysis of expertise in intelligence analysis to support the design of human-centered artificial intelligence. https://doi.org/10.1109/SMC52423.2021.9659095
Automated identification of insight seeking behaviours, strategies and rules: a preliminary study
Hepenstal, S., Zhang, L. and Wong, BL William 2021. Automated identification of insight seeking behaviours, strategies and rules: a preliminary study. Sage Journals: Proceedings of the Human Factors and Ergonomics Society Annual Meeting . (65), pp. 1269-1273. https://doi.org/https://doi.org/10.1177/1071181321651348
A granular computing approach to provide transparency of intelligent systems for criminal investigations
Zhang, L. 2021. A granular computing approach to provide transparency of intelligent systems for criminal investigations. in: Pedrycz, W. and Chen, S.-M. (ed.) Interpretable Artificial Intelligence: A Perspective of Granular Computing Cham Springer.
Developing conversational agents for use in criminal investigations
Hepenstal, S., Zhang, L., Kodagoda N. and Wong B.L.W 2021. Developing conversational agents for use in criminal investigations. ACM Transactions on Interactive Intelligent Systems. 11 (3-4), pp. 1-35. https://doi.org/10.1145/3444369