Utilising transformers for American Sign Language fingerspelling recognition

Book chapter


Pinnington, Jamie, Souag, Amina and Hannan Bin Azhar, M A 2024. Utilising transformers for American Sign Language fingerspelling recognition. in: 2024 IEEE 24th International Symposium on Computational Intelligence and Informatics (CINTI) IEEE. pp. 000129-000134
AuthorsPinnington, Jamie, Souag, Amina and Hannan Bin Azhar, M A
Abstract

This paper presents a machine learning approach to American Sign Language (ASL) fingerspelling recognition using Transformer models. Addressing the challenges of high variability in hand shapes, movement, and signing speed, the study utilises the new ASL Fingerspelling Recognition Corpus and the CRISP-DM methodology to develop and evaluate a proof-of-concept model. The model achieved a mean Levenshtein distance of 4.7, corresponding to an error rate of 16.37%. This research demonstrates the feasibility of using advanced AI techniques to enhance accessibility for the deaf and hard of hearing communities by translating ASL fingerspelling into text.

KeywordsAmerican Sign Language (ASL); Fingerspelling recognition; Transformer models; Machine learning; CRISP-DM; AI accessibility; Deaf and hard of hearing; Levenshtein distance; PyTorch; MediaPipe
Page range000129-000134
Year2024
Book title2024 IEEE 24th International Symposium on Computational Intelligence and Informatics (CINTI)
PublisherIEEE
Output statusPublished
ISBN9798350353433
ISSN2471-9269
Publication dates
Online13 Jan 2025
Print19 Nov 2024
Publication process dates
Deposited27 Nov 2024
Digital Object Identifier (DOI)https://doi.org/10.1109/cinti63048.2024.10830857
Official URLhttps://ieeexplore.ieee.org/document/10830857
Related URLhttps://conf.uni-obuda.hu/cinti2024/
Additional information

Publications router.

Journal2024 IEEE 24th International Symposium on Computational Intelligence and Informatics (CINTI)
Permalink -

https://repository.canterbury.ac.uk/item/99v5z/utilising-transformers-for-american-sign-language-fingerspelling-recognition

  • 27
    total views
  • 1
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as