Dr Amina Souag


NameDr Amina Souag
Job titleLecturer in Computing
Research instituteSchool of Engineering, Technology and Design

Research outputs

A hybrid machine learning approach for enhanced skin cancer diagnosis using convolutional neural networks, support vector machines, and gradient boosting

Souag, A. and Olowolayemo, A. 2025. A hybrid machine learning approach for enhanced skin cancer diagnosis using convolutional neural networks, support vector machines, and gradient boosting. in: Sztandera, L. (ed.) AIHealth 2025: The Second International Conference on AI-Health ThinkMind. pp. 35-51

Evaluating the impact of machine learning platforms on cancer classification model performance: A cross-platform comparative study

Olowolayemo, A., Souag, A. and Sirlantzis, K. 2024. Evaluating the impact of machine learning platforms on cancer classification model performance: A cross-platform comparative study. International Journal on Advanced in Life Sciences. 16 (no 3 & 4), pp. 96 - 111.

Machine learning in ASL fingerspelling recognition: A literature review

Pinnington, J., Souag, A. and Azhar, H. 2024. Machine learning in ASL fingerspelling recognition: A literature review. in: 2024 IEEE 24th International Symposium on Computational Intelligence and Informatics (CINTI) IEEE.

Utilising transformers for American Sign Language fingerspelling recognition

Pinnington, Jamie, Souag, A. and Azhar, H. 2024. Utilising transformers for American Sign Language fingerspelling recognition. in: 2024 IEEE 24th International Symposium on Computational Intelligence and Informatics (CINTI) IEEE. pp. 000129-000134

A novel dataset of annotated oyster mushroom images with environmental context for machine learning applications

Duman, S., Elewi, A., Hajhamed, A., Khankan, R., Souag, A. and Ahmed, A. 2024. A novel dataset of annotated oyster mushroom images with environmental context for machine learning applications. Data in Brief. 57. https://doi.org/10.1016/j.dib.2024.111074

Design and implementation of a cost-aware and smart oyster mushroom cultivation system

Souag, A., Elewi, A., Hajhamed, A., Khankan, R., Duman, S. and Ahmed, A. 2024. Design and implementation of a cost-aware and smart oyster mushroom cultivation system. Smart Agricultural Technology. Volume 8. https://doi.org/10.1016/j.atech.2024.100439

Cancer: Investigating the impact of the implementation platform on machine learning models

Olowolayemo, A. S., Souag, A. and Sirlantzis, K. 2024. Cancer: Investigating the impact of the implementation platform on machine learning models. in: Mengoni, M. and Souag, A. (ed.) AIHealth 2024, The First International Conference on AI-Health ThinkMind.

AIHealth 2024, Proceedings of The First International Conference on AI-Health

Souag, A. and Mengoni, M. (ed.) 2024. AIHealth 2024, Proceedings of The First International Conference on AI-Health. Athens, Greece ThinkMind.

AMAN-DA: A knowledge reuse based approach for domain specific security requirements engineering

Souag, A. 2015. AMAN-DA: A knowledge reuse based approach for domain specific security requirements engineering. PhD Thesis Université Paris 1 Panthéon-Sorbonne CRI - Centre de Recherche en Informatique de Paris 1

How can the semantic web and ontologies help history and archeology

Souag, A. 2019. How can the semantic web and ontologies help history and archeology. in: Dans les dédales du web. Historiens en territoires numériques Paris Éditions de la Sorbonne.

A security ontology for security requirements elicitation

Souag, A. and Salinesi C., Mazo R., Comyn-Wattiau I. 2015. A security ontology for security requirements elicitation. https://doi.org/10.1007/978-3-319-15618-7_13

Ontologies for security requirements: a literature survey and classification’

Souag, A. and Salinesi C., Comyn-Wattiau I. 2012. Ontologies for security requirements: a literature survey and classification’. https://doi.org/10.1007/978-3-642-31069-0_5

Why should everybody learn Artificial Intelligence?

Turner, S. and Souag, A. 2022. Why should everybody learn Artificial Intelligence? ETD blog, Canterbury Christ church University

Using the AMAN-DA method to generate security requirements: a case study in the maritime domain

Souag, A., Mazo, R., Salinesi, C. and Comyn-Wattiau, I. 2018. Using the AMAN-DA method to generate security requirements: a case study in the maritime domain. Requirements Engineering Journal. 23 (557–580). https://doi.org/10.1007/s00766-017-0279-5

Reusable knowledge in security requirements engineering: a systematic mapping study

Souag, A., Mazo, R., Salinesi, C. and Comyn-Wattiau, I. 2016. Reusable knowledge in security requirements engineering: a systematic mapping study. Requirements Engineering Journal. 21 (251–283). https://doi.org/10.1007/s00766-015-0220-8

A methodology for defining security requirements using security and domain ontologies

Souag, A., Salinesi C. and Comyn-Wattiau I. 2013. A methodology for defining security requirements using security and domain ontologies. Insight. Volume 16 (4), pp. 14-16. https://doi.org/10.1002/inst.201316414
  • 1439
    total views of outputs
  • 317
    total downloads of outputs
  • 59
    views of outputs this month
  • 57
    downloads of outputs this month