Ion channel tools and therapeutics from venoms and toxins

Book chapter


Trim, C., Leffer, A.E., Samanani, Z and Trim, S. 2024. Ion channel tools and therapeutics from venoms and toxins. in: Stephens, G. and Stevens, E. (ed.) Ion Channels as Targets in Drug Discovery Cham Springer. pp. 497-534
AuthorsTrim, C., Leffer, A.E., Samanani, Z and Trim, S.
EditorsStephens, G. and Stevens, E.
Abstract

For almost as long as the ion channels in our brains have powered conscious thought, we have been fascinated by venoms and toxins. Initially thought of as magical, now we are understanding their true power and utility in drug discovery. A diverse range of venoms and toxins have been used to decipher the properties of ion channels and as a result hold a key functional place as positive controls in many assays. Such control toxins include tetrodotoxin, protoxin and charybdotoxin that are found in diverse species. The latest advances in computational chemistry and structural biology, such as cryogenic electron microscopy and free energy perturbation, are opening our drug discovery gaze to the atomic interactions of toxins and ion channels. Coupled with advances in ion channel screening and peptide biochemistry, we are on the verge of a new wave of toxin discovery and clinical application. These toxins also tackle challenging drug targets that are in desperate need of new chemical modalities. This chapter details the advances in toxin drug discovery though clinical development and new understanding of licensed drugs that feeds back to improve further therapeutic opportunities.

KeywordsIon channel tools; Translational neuroscience; Toxins; Drug discovery; Venoms
Page range497-534
Year2024
Book titleIon Channels as Targets in Drug Discovery
PublisherSpringer
Output statusPublished
Place of publicationCham
ISBN9783031521966
9783031521997
9783031521973
Publication dates
Print25 Apr 2024
Publication process dates
Deposited01 May 2024
Official URLhttps://link.springer.com/chapter/10.1007/978-3-031-52197-3_15
Related URLhttps://link.springer.com/book/10.1007/978-3-031-52197-3
Permalink -

https://repository.canterbury.ac.uk/item/97w0q/ion-channel-tools-and-therapeutics-from-venoms-and-toxins

  • 41
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

Investigating the effect of mesoporous silica nanoparticles as a drug delivery system for Withaferin A in the treatment of Lung Cancer
Holder, J., Wilson, C., Bertolo-Pardo, E., Byrne, L., Lodeiro, C., Oliveira, E. and Trim, C. 2024. Investigating the effect of mesoporous silica nanoparticles as a drug delivery system for Withaferin A in the treatment of Lung Cancer.
Investigating the effect of silica nanoparticles as a drug delivery system for Doxorubicin in the treatment of lung cancer
Holder, J., Wilson, C., Bertolo-Pardo, E., Byrne, L., Oliveira, E., Lodeiro, C. and Trim, C. 2024. Investigating the effect of silica nanoparticles as a drug delivery system for Doxorubicin in the treatment of lung cancer.
The use of nanoparticles for targeted drug delivery in non-small cell lung cancer.
Holder, Jessica E, Ferguson, C., Oliveira, Elisabete, Lodeiro, Carlos, Trim, Carol M, Byrne, Lee J, Bertolo, Emilia and Wilson, Cornelia M 2023. The use of nanoparticles for targeted drug delivery in non-small cell lung cancer. Frontiers in Oncology. 13, p. 1154318. https://doi.org/10.3389/fonc.2023.1154318
Purified venom components inhibit EGFR phosphorylation in triple negative breast cancer
Mccullough, D., Baker, S., Trim, S. and Trim, C. 2022. Purified venom components inhibit EGFR phosphorylation in triple negative breast cancer.
Bacterial adaptation to venom in snakes and arachnida
Esmaeilishirazifard, Elham, Usher, Louise, Trim, Carol, Denise, Hubert, Sangal, V., Tyson, G., Barlow, Axel, Redway, Keith F., Taylor, John D., Kremyda-Vlachou, Myrto, Davies, Sam, Loftus, Teresa D., Lock, Mikaella M. G., Wright, Kstir, Dalby, Andrew, Snyder, L., Wuster, Wolfgang, Trim, Steve and Moschos, S. 2022. Bacterial adaptation to venom in snakes and arachnida. Microbiology Spectrum. p. e0240821. https://doi.org/10.1128/spectrum.02408-21
Utilisation of compounds from venoms in drug discovery
Trim, Carol M, Byrne, Lee J and Trim, Steven A 2021. Utilisation of compounds from venoms in drug discovery. Progress in Medicinal Chemistry. 60, pp. 1-66. https://doi.org/S0079-6468(21)00001-1
Powerful proteins from polyp possessing predators
Robinson P.J., Trim, S.A. and Trim, C.M. 2021. Powerful proteins from polyp possessing predators. in: Mariottini, G.L., Killi, N. and Xiao, L. (ed.) The Cnidaria: only a problem or also a source Nova Science Publishers.
Beauty from the deep: cnidarians in cosmetics
Trim, S.A., Wandrey, F and Trim, C.M. 2021. Beauty from the deep: cnidarians in cosmetics. in: Mariottini, G.L., Killi, N. and Xiao, L. (ed.) The Cnidaria: Only a problem or also a source Nova Science Publishers.
Full spectrum lighting induces behavioral changes and increases cortisol immunoreactivity in captive arachnids
Somerville, S., Baker, S., Baines, F., Trim, S. and Trim, C.M. 2020. Full spectrum lighting induces behavioral changes and increases cortisol immunoreactivity in captive arachnids. Journal of Applied Animal Welfare Science. 24 (2), pp. 132-148. https://doi.org/10.1080/10888705.2021.1872027
The failures of ethnobotany and phytomedicine in delivering novel treatments for snakebite envenomation
Trim, S., Trim, C., Williams, H. F. and Vaiyapuri, S. 2020. The failures of ethnobotany and phytomedicine in delivering novel treatments for snakebite envenomation. Toxins. 12 (12). https://doi.org/10.3390/toxins12120774
Kinome scale profiling of venom effects on cancer cells reveals potential new venom activities
Mccullough, D., Atofanei, C., Knight, E., Trim, S. and Trim, C.M. 2020. Kinome scale profiling of venom effects on cancer cells reveals potential new venom activities. Toxicon. 185, pp. 129-146. https://doi.org/10.1016/j.toxicon.2020.07.007
Microbial adaptation to venom is common in snakes and spiders
Esmaeilishirazifard, E., Usher, L., Trim, C., Denise, H., Sangal, V., Tyson, G., Barlow, A., Redway, K., Taylor, J., Kremyda-Vlachou, M., Loftus, T., Lock, M., Wright, K., Dalby, A., Snyder, L., Wuster, W., Trim, S. and Moschos, S. 2018. Microbial adaptation to venom is common in snakes and spiders. bioRxiv. https://doi.org/10.1101/348433v1
Transitioning novel peptide hits into lead compounds
Trim, S. and Trim, C. 2019. Transitioning novel peptide hits into lead compounds. Drug Target Review. (4).
Non-invasive extraction of Cnidarian venom through the use of autotomised tentacles
Robinson, P., Trim, S. and Trim, C. 2019. Non-invasive extraction of Cnidarian venom through the use of autotomised tentacles. Animal Technology and Welfare. 18 (3).
Rapid method for targeted cell (line) selection
Lang, D., Martin, E., Montague, G., O'Malley, C., Root, T., Trim, C., Povey, J., Smales, C. and Racher, A. 2012. Rapid method for targeted cell (line) selection.
Localisation of Neuregulin 1-β3 to different sub-nuclear structures alters gene expression
Wang, M., Trim, C. and Gullick, W. 2011. Localisation of Neuregulin 1-β3 to different sub-nuclear structures alters gene expression. Experimental Cell Research. 317 (4), pp. 423-432. https://doi.org/10.1016/j.yexcr.2010.11.009.
Venom: The sharp end of pain therapy
Trim, S. and Trim, C. 2013. Venom: The sharp end of pain therapy. British Journal of Pain. 7 (4), pp. 179-188. https://doi.org/10.1177/2049463713502005
Novel approaches to targeting protein tyrosine kinases
McCullough, D. and Trim, C. 2015. Novel approaches to targeting protein tyrosine kinases. Drug Target Review.
Rapid high-throughput characterisation, classification and selection of recombinant mammalian cell line phenotypes using intact cell MALDI-ToF mass spectrometry fingerprinting and PLS-DA modelling
Povey, J., O'Malley, C., Root, T., Martin, E., Montague, G., Feary, M., Trim, C., Lang, D., Aldread, R., Racher, A. and Smales, C. 2014. Rapid high-throughput characterisation, classification and selection of recombinant mammalian cell line phenotypes using intact cell MALDI-ToF mass spectrometry fingerprinting and PLS-DA modelling. Journal of Biotechnology. 184, pp. 84-93. https://doi.org/10.1016/j.jbiotec.2014.04.028
Neuregulins in the nucleus
McClelland, C. and Gullick, W. 2009. Neuregulins in the nucleus. in: Giordano, A. and Normanno, N. (ed.) Breast Cancer In the Post-Genomic Era Springer. pp. 79-86
Proteomic identification of secreted proteins as surrogate markers for signal transduction inhibitor activity
McClelland, C. and Gullick, W. 2007. Proteomic identification of secreted proteins as surrogate markers for signal transduction inhibitor activity. British Journal of Cancer. 96 (2), pp. 284-289. https://doi.org/10.1038/sj.bjc.6603544
99mTc-SnF2 colloid “LLK”: particle size, morphology, and leukocyte labelling behaviour
McClelland, C., Onuegbulem, E., Carter, N., Leahy, M., O'Doherty, M., Pooley, F., O'Doherty, T., Newsam, R., Ensing, G. and Blower, P. 2003. 99mTc-SnF2 colloid “LLK”: particle size, morphology, and leukocyte labelling behaviour. Nuclear Medicine Communications. 24 (2), pp. 191-202. https://doi.org/10.1097/01.mnm.0000057333.59072.1c
Identification of surrogate markers for determining drug activity using proteomics
McClelland, C. and Gullick, W. 2003. Identification of surrogate markers for determining drug activity using proteomics. Biochemical Society Transactions. 31 (6), pp. 1488-1490. https://doi.org/10.1042/bst0311488