Venom: The sharp end of pain therapy

Journal article


Trim, S. and Trim, C. 2013. Venom: The sharp end of pain therapy. British Journal of Pain. 7 (4), pp. 179-188. https://doi.org/10.1177/2049463713502005
AuthorsTrim, S. and Trim, C.
Abstract

Adequate pain control is still a significant challenge and largely unmet medical need in the 21st century. With many small molecules failing to reach required levels of potency and selectivity, drug discovery is
once again turning to nature to replenish pain therapeutic pipelines. Venomous animals are frequently stereotyped as inflictors of pain and distress and have historically been vilified by mankind. Yet, ironically, the very venoms that cause pain when directly injected by the host animal may actually turn out to contain the next generation of analgesics when injected by the clinician. The last 12 months have seen dramatic discoveries of analgesic tools within venoms. Spiders, snakes and even centipedes are yielding peptides with immense therapeutic potential. Significant advances are also taking place in delivery methods that can improve bioavailability and pharmacokinetics of these exciting natural resources. Turning proteinaceous venom into pharmaceutical liquid gold is the goal of venomics and the focus of this article.

Year2013
JournalBritish Journal of Pain
Journal citation7 (4), pp. 179-188
PublisherSAGE
ISSN2049-4637
Digital Object Identifier (DOI)https://doi.org/10.1177/2049463713502005
Publication dates
PrintNov 2013
Publication process dates
Deposited15 Jul 2015
Accepted2013
Output statusPublished
Permalink -

https://repository.canterbury.ac.uk/item/87626/venom-the-sharp-end-of-pain-therapy

  • 7
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Utilisation of compounds from venoms in drug discovery
Trim, C., Byrne, L. and Trim, S. 2021. Utilisation of compounds from venoms in drug discovery. in: Witty, D.R. (ed.) Progress in medicinal chemistry volume 60 Elsevier.
Powerful proteins from polyp possessing predators
Robinson P.J., Trim, S.A. and Trim, C.M. 2021. Powerful proteins from polyp possessing predators. in: Mariottini, G.L., Killi, N. and Xiao, L. (ed.) The Cnidaria: only a problem or also a source Nova Science Publishers.
Beauty from the deep: cnidarians in cosmetics
Trim, S.A., Wandrey, F and Trim, C.M. 2021. Beauty from the deep: cnidarians in cosmetics. in: Mariottini, G.L., Killi, N. and Xiao, L. (ed.) The Cnidaria: Only a problem or also a source Nova Science Publishers.
Full spectrum lighting induces behavioral changes and increases cortisol immunoreactivity in captive arachnids
Somerville, S., Baker, S., Baines, F., Trim, S. and Trim, C.M. 2020. Full spectrum lighting induces behavioral changes and increases cortisol immunoreactivity in captive arachnids. Journal of Applied Animal Welfare Science. https://doi.org/10.1080/10888705.2021.1872027
The failures of ethnobotany and phytomedicine in delivering novel treatments for snakebite envenomation
Trim, S., Trim, C., Williams, H. F. and Vaiyapuri, S. 2020. The failures of ethnobotany and phytomedicine in delivering novel treatments for snakebite envenomation. Toxins. 12 (12). https://doi.org/10.3390/toxins12120774
Kinome scale profiling of venom effects on cancer cells reveals potential new venom activities
Mccullough, D., Atofanei, C., Knight, E., Trim, S. and Trim, C.M. 2020. Kinome scale profiling of venom effects on cancer cells reveals potential new venom activities. Toxicon. 185, pp. 129-146. https://doi.org/10.1016/j.toxicon.2020.07.007
Microbial adaptation to venom is common in snakes and spiders
Esmaeilishirazifard, E., Usher, L., Trim, C., Denise, H., Sangal, V., Tyson, G., Barlow, A., Redway, K., Taylor, J., Kremyda-Vlachou, M., Loftus, T., Lock, M., Wright, K., Dalby, A., Snyder, L., Wuster, W., Trim, S. and Moschos, S. 2018. Microbial adaptation to venom is common in snakes and spiders. bioRxiv. https://doi.org/10.1101/348433v1
Transitioning novel peptide hits into lead compounds
Trim, S. and Trim, C. 2019. Transitioning novel peptide hits into lead compounds. Drug Target Review. (4).
Non-invasive extraction of Cnidarian venom through the use of autotomised tentacles
Robinson, P., Trim, S. and Trim, C. 2019. Non-invasive extraction of Cnidarian venom through the use of autotomised tentacles. Animal Technology and Welfare. 18 (3).
Rapid method for targeted cell (line) selection
Lang, D., Martin, E., Montague, G., O'Malley, C., Root, T., Trim, C., Povey, J., Smales, C. and Racher, A. 2012. Rapid method for targeted cell (line) selection.
Localisation of Neuregulin 1-β3 to different sub-nuclear structures alters gene expression
Wang, M., Trim, C. and Gullick, W. 2011. Localisation of Neuregulin 1-β3 to different sub-nuclear structures alters gene expression. Experimental Cell Research. 317 (4), pp. 423-432. https://doi.org/10.1016/j.yexcr.2010.11.009.
Novel approaches to targeting protein tyrosine kinases
McCullough, D. and Trim, C. 2015. Novel approaches to targeting protein tyrosine kinases. Drug Target Review.
Rapid high-throughput characterisation, classification and selection of recombinant mammalian cell line phenotypes using intact cell MALDI-ToF mass spectrometry fingerprinting and PLS-DA modelling
Povey, J., O'Malley, C., Root, T., Martin, E., Montague, G., Feary, M., Trim, C., Lang, D., Aldread, R., Racher, A. and Smales, C. 2014. Rapid high-throughput characterisation, classification and selection of recombinant mammalian cell line phenotypes using intact cell MALDI-ToF mass spectrometry fingerprinting and PLS-DA modelling. Journal of Biotechnology. 184, pp. 84-93. https://doi.org/10.1016/j.jbiotec.2014.04.028
Neuregulins in the nucleus
McClelland, C. and Gullick, W. 2009. Neuregulins in the nucleus. in: Giordano, A. and Normanno, N. (ed.) Breast Cancer In the Post-Genomic Era Springer. pp. 79-86
Proteomic identification of secreted proteins as surrogate markers for signal transduction inhibitor activity
McClelland, C. and Gullick, W. 2007. Proteomic identification of secreted proteins as surrogate markers for signal transduction inhibitor activity. British Journal of Cancer. 96 (2), pp. 284-289. https://doi.org/10.1038/sj.bjc.6603544
99mTc-SnF2 colloid “LLK”: particle size, morphology, and leukocyte labelling behaviour
McClelland, C., Onuegbulem, E., Carter, N., Leahy, M., O'Doherty, M., Pooley, F., O'Doherty, T., Newsam, R., Ensing, G. and Blower, P. 2003. 99mTc-SnF2 colloid “LLK”: particle size, morphology, and leukocyte labelling behaviour. Nuclear Medicine Communications. 24 (2), pp. 191-202. https://doi.org/10.1097/01.mnm.0000057333.59072.1c
Identification of surrogate markers for determining drug activity using proteomics
McClelland, C. and Gullick, W. 2003. Identification of surrogate markers for determining drug activity using proteomics. Biochemical Society Transactions. 31 (6), pp. 1488-1490. https://doi.org/10.1042/bst0311488