Rapid method for targeted cell (line) selection

Patent


Lang, D., Martin, E., Montague, G., O'Malley, C., Root, T., Trim, C., Povey, J., Smales, C. and Racher, A. 2012. Rapid method for targeted cell (line) selection.
AuthorsLang, D., Martin, E., Montague, G., O'Malley, C., Root, T., Trim, C., Povey, J., Smales, C. and Racher, A.
Patent applicantLonza Biologics PLC
Abstract

The present invention relates to a process for the prediction of cell culture performance data of sample cells, a process for the isolation of said cells and a device for the prediction of cell culture performance data of sample cells.

Year2012
Digital Object Identifier (DOI)https://doi.org/EP20100014005
Output statusPublished
Publication dates
Print02 May 2012
Publication process dates
Deposited17 Jul 2015
Permalink -

https://repository.canterbury.ac.uk/item/8762v/rapid-method-for-targeted-cell-line-selection

  • 59
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

The use of nanoparticles for targeted drug delivery in non-small cell lung cancer.
Holder, Jessica E, Ferguson, Christopher, Oliveira, Elisabete, Lodeiro, Carlos, Trim, Carol M, Byrne, Lee J, Bertolo, Emilia and Wilson, Cornelia M 2023. The use of nanoparticles for targeted drug delivery in non-small cell lung cancer. Frontiers in Oncology. 13, p. 1154318. https://doi.org/10.3389/fonc.2023.1154318
Bacterial adaptation to venom in snakes and arachnida
Esmaeilishirazifard, Elham, Usher, Louise, Trim, Carol, Denise, Hubert, Sangal, V., Tyson, G., Barlow, Axel, Redway, Keith F., Taylor, John D., Kremyda-Vlachou, Myrto, Davies, Sam, Loftus, Teresa D., Lock, Mikaella M. G., Wright, Kstir, Dalby, Andrew, Snyder, L., Wuster, Wolfgang, Trim, Steve and Moschos, S. 2022. Bacterial adaptation to venom in snakes and arachnida. Microbiology Spectrum. p. e0240821. https://doi.org/10.1128/spectrum.02408-21
Utilisation of compounds from venoms in drug discovery.
Trim, Carol M, Byrne, Lee J and Trim, Steven A 2021. Utilisation of compounds from venoms in drug discovery. in:
Powerful proteins from polyp possessing predators
Robinson P.J., Trim, S.A. and Trim, C.M. 2021. Powerful proteins from polyp possessing predators. in: Mariottini, G.L., Killi, N. and Xiao, L. (ed.) The Cnidaria: only a problem or also a source Nova Science Publishers.
Beauty from the deep: cnidarians in cosmetics
Trim, S.A., Wandrey, F and Trim, C.M. 2021. Beauty from the deep: cnidarians in cosmetics. in: Mariottini, G.L., Killi, N. and Xiao, L. (ed.) The Cnidaria: Only a problem or also a source Nova Science Publishers.
Full spectrum lighting induces behavioral changes and increases cortisol immunoreactivity in captive arachnids
Somerville, S., Baker, S., Baines, F., Trim, S. and Trim, C.M. 2020. Full spectrum lighting induces behavioral changes and increases cortisol immunoreactivity in captive arachnids. Journal of Applied Animal Welfare Science. 24 (2), pp. 132-148. https://doi.org/10.1080/10888705.2021.1872027
The failures of ethnobotany and phytomedicine in delivering novel treatments for snakebite envenomation
Trim, S., Trim, C., Williams, H. F. and Vaiyapuri, S. 2020. The failures of ethnobotany and phytomedicine in delivering novel treatments for snakebite envenomation. Toxins. 12 (12). https://doi.org/10.3390/toxins12120774
Kinome scale profiling of venom effects on cancer cells reveals potential new venom activities
Mccullough, D., Atofanei, C., Knight, E., Trim, S. and Trim, C.M. 2020. Kinome scale profiling of venom effects on cancer cells reveals potential new venom activities. Toxicon. 185, pp. 129-146. https://doi.org/10.1016/j.toxicon.2020.07.007
Microbial adaptation to venom is common in snakes and spiders
Esmaeilishirazifard, E., Usher, L., Trim, C., Denise, H., Sangal, V., Tyson, G., Barlow, A., Redway, K., Taylor, J., Kremyda-Vlachou, M., Loftus, T., Lock, M., Wright, K., Dalby, A., Snyder, L., Wuster, W., Trim, S. and Moschos, S. 2018. Microbial adaptation to venom is common in snakes and spiders. bioRxiv. https://doi.org/10.1101/348433v1
Transitioning novel peptide hits into lead compounds
Trim, S. and Trim, C. 2019. Transitioning novel peptide hits into lead compounds. Drug Target Review. (4).
Non-invasive extraction of Cnidarian venom through the use of autotomised tentacles
Robinson, P., Trim, S. and Trim, C. 2019. Non-invasive extraction of Cnidarian venom through the use of autotomised tentacles. Animal Technology and Welfare. 18 (3).
Localisation of Neuregulin 1-β3 to different sub-nuclear structures alters gene expression
Wang, M., Trim, C. and Gullick, W. 2011. Localisation of Neuregulin 1-β3 to different sub-nuclear structures alters gene expression. Experimental Cell Research. 317 (4), pp. 423-432. https://doi.org/10.1016/j.yexcr.2010.11.009.
Venom: The sharp end of pain therapy
Trim, S. and Trim, C. 2013. Venom: The sharp end of pain therapy. British Journal of Pain. 7 (4), pp. 179-188. https://doi.org/10.1177/2049463713502005
Novel approaches to targeting protein tyrosine kinases
McCullough, D. and Trim, C. 2015. Novel approaches to targeting protein tyrosine kinases. Drug Target Review.
Rapid high-throughput characterisation, classification and selection of recombinant mammalian cell line phenotypes using intact cell MALDI-ToF mass spectrometry fingerprinting and PLS-DA modelling
Povey, J., O'Malley, C., Root, T., Martin, E., Montague, G., Feary, M., Trim, C., Lang, D., Aldread, R., Racher, A. and Smales, C. 2014. Rapid high-throughput characterisation, classification and selection of recombinant mammalian cell line phenotypes using intact cell MALDI-ToF mass spectrometry fingerprinting and PLS-DA modelling. Journal of Biotechnology. 184, pp. 84-93. https://doi.org/10.1016/j.jbiotec.2014.04.028
Neuregulins in the nucleus
McClelland, C. and Gullick, W. 2009. Neuregulins in the nucleus. in: Giordano, A. and Normanno, N. (ed.) Breast Cancer In the Post-Genomic Era Springer. pp. 79-86
Proteomic identification of secreted proteins as surrogate markers for signal transduction inhibitor activity
McClelland, C. and Gullick, W. 2007. Proteomic identification of secreted proteins as surrogate markers for signal transduction inhibitor activity. British Journal of Cancer. 96 (2), pp. 284-289. https://doi.org/10.1038/sj.bjc.6603544
99mTc-SnF2 colloid “LLK”: particle size, morphology, and leukocyte labelling behaviour
McClelland, C., Onuegbulem, E., Carter, N., Leahy, M., O'Doherty, M., Pooley, F., O'Doherty, T., Newsam, R., Ensing, G. and Blower, P. 2003. 99mTc-SnF2 colloid “LLK”: particle size, morphology, and leukocyte labelling behaviour. Nuclear Medicine Communications. 24 (2), pp. 191-202. https://doi.org/10.1097/01.mnm.0000057333.59072.1c
Identification of surrogate markers for determining drug activity using proteomics
McClelland, C. and Gullick, W. 2003. Identification of surrogate markers for determining drug activity using proteomics. Biochemical Society Transactions. 31 (6), pp. 1488-1490. https://doi.org/10.1042/bst0311488