Fermentation of synthesis gas to fuel ethanol

Conference paper


Ahmed, A., Lewis, R.S., Cateni, B.G., Huhnke, R.L., Bellmer, D. and Tanner, R.S. 2005. Fermentation of synthesis gas to fuel ethanol.
AuthorsAhmed, A., Lewis, R.S., Cateni, B.G., Huhnke, R.L., Bellmer, D. and Tanner, R.S.
TypeConference paper
Description

The fermentation of biomass-generated synthesis gas (syngas) was studied. Switchgrass and bermudagrass were gasified using three reactor operating conditions: air gasification, near pyrolysis, and steam. For switchgrass, the average CO concentration increased from 20 % with air to 47% with steam, while the H2 concentration increased from 6% to 18%. For bermudagrass, the CO concentration increased from 16% with air to 34% with steam, while the H2 concentration increased from 6% to 28%.
The syngas generated from air gasification was bubbled into a 3-liter bioreactor containing Strain P7. P7 was isolated froman agricultural lagoon and is a new species of Clostridium closely related to Clostridium scatologenes. Important characteristics of P7 include excellent culture stability, tolerance to oxygen, tolerance to high concentrations of ethanol, and an ability to grow in defined medium. Syngas fermentation caused an increase in ethanol production compared to bottled gases of similar composition. However,
exposure to the gas also resulted in cell dormancy and inhibition of hydrogen consumption. The cell dormancy was circumvented by additional cleaning of the gas using acetone scrubbing and a 0.025 µm filter. Gases known to cause hydrogenase inhibition, such as nitric oxide and acetylene, were evaluated with regards to hydrogenase activity.

KeywordsEthanol; Synthesis gas ; Fermentation
Year2005
Conference27th Symposium on Biotechnology for Fuels and Chemicals, National Renewable Energy Laboratory
Official URLhttps://www.nrel.gov/docs/gen/fy05/36826.pdf
Publication process dates
Deposited04 Jan 2022
Permalink -

https://repository.canterbury.ac.uk/item/8zy7y/fermentation-of-synthesis-gas-to-fuel-ethanol

  • 95
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

Nonlinear viscoelasticity of filamentous fungal biofilms of
Aiswarya, N. M., Tabraiz, Shamas, Taneja, H., Ahmed, A. and Aravinda Narayanan, R. 2024. Nonlinear viscoelasticity of filamentous fungal biofilms of . Biofilm. 8, p. 100227. https://doi.org/10.1016/j.bioflm.2024.100227
Design and implementation of a cost-aware and smart oyster mushroom cultivation system
Souag, A., Elewi, A., Hajhamed, A., Khankan, R., Duman, S. and Ahmed, A. 2024. Design and implementation of a cost-aware and smart oyster mushroom cultivation system. Smart Agricultural Technology. Volume 8. https://doi.org/10.1016/j.atech.2024.100439
Biofilm-based simultaneous nitrification, denitrification, and phosphorous uptake in wastewater by Neurospora discreta
Ahmed, A., Tabraiz, S., N.M.Aiswarya, Taneja, H. and R. Aravinda Narayanan 2022. Biofilm-based simultaneous nitrification, denitrification, and phosphorous uptake in wastewater by Neurospora discreta . Journal of Environmental Management. 324, p. 116363. https://doi.org/10.1016/j.jenvman.2022.116363
UV-filter pollution: current concerns and future prospects.
de Miranda, L., Harvey, K., Ahmed, A. and Harvey, S. 2021. UV-filter pollution: current concerns and future prospects. Environmental Monitoring and Assessment. 193 (12), p. 840. https://doi.org/10.1007/s10661-021-09626-6
Fungal solubilisation and subsequent microbial methanation of coal processing wastes
Ahmed, A. and Sharma, Anima 2021. Fungal solubilisation and subsequent microbial methanation of coal processing wastes. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-021-03681-y
Fungal biofilms as low-modulus structural biocomposites
Ahmed, A. and Narayanan, R.A. 2020. Fungal biofilms as low-modulus structural biocomposites.
Method for obtaining a glycoprotein composition
Ahmed, A., Hariharan, R. and Naresh, B.S. 2020. Method for obtaining a glycoprotein composition. Indian Patent 352861
A study on solid state fermentations of Sugarcane Bagasse using different fungi
Pamidipati, S. and Ahmed, A. 2014. A study on solid state fermentations of Sugarcane Bagasse using different fungi.
Bio-processing of agricultural residues to bio-fuels using Neurospora discreta
Pamidipati, S. and Ahmed, A. 2017. Bio-processing of agricultural residues to bio-fuels using Neurospora discreta.
Improved ammonium removal from industrial wastewater through systematic adaptation of wild type Chlorella pyrenoidosa
Ahmed, A., Nimmakayala, J. and Ramesh, A. 2017. Improved ammonium removal from industrial wastewater through systematic adaptation of wild type Chlorella pyrenoidosa. Water Science & Technology. 75 (1), pp. 182-188. https://doi.org/10.2166/wst.2016.507
Degradation of lignin in agricultural residues by locally isolated fungus Neurospora discreta
Pamidipati, S. and Ahmed, A. 2016. Degradation of lignin in agricultural residues by locally isolated fungus Neurospora discreta. Applied Biochemistry and Biotechnology.
Cellulase stimulation during biodegradation of lignocellulosic residues at increased biomass loading
Pamidipati, S. and Ahmed, A. 2018. Cellulase stimulation during biodegradation of lignocellulosic residues at increased biomass loading. Biocatalysis and Biotransformation. https://doi.org/10.1080/10242422.2018.1508284
A first report on competitive inhibition of laccase enzyme by lignin degradation intermediates
Pamidpati, S. and Ahmed, A. 2019. A first report on competitive inhibition of laccase enzyme by lignin degradation intermediates. Folia Microbiologica. https://doi.org/10.1007/s12223-019-00765-5
Influence of carbon source complexity on porosity, water retention and extracellular matrix composition of Neurospora discreta biofilms
Ahmed, A., Narayanan, R.A. and Veni, A.R. 2019. Influence of carbon source complexity on porosity, water retention and extracellular matrix composition of Neurospora discreta biofilms. Journal of Applied Microbiology. 128 (4), pp. 1099-1108. https://doi.org/10.1111/jam.14539
Arrested fungal biofilms as low-modulus structural bio-composites: water holds the key
Aravinda Narayanan, R. and Ahmed, A. 2019. Arrested fungal biofilms as low-modulus structural bio-composites: water holds the key. The European Physical Journal E. 42 (134). https://doi.org/10.1140/epje/i2019-11899-2
Fermentation of syngas to ethanol without media replacement
Ahmed, A., White, A., Hu, P., Broderick, A., Sarager, L., Ralston, T. and Lewis, R.S. 2007. Fermentation of syngas to ethanol without media replacement.
Effects of biomass-generated syngas on cell-growth, product distribution and enzyme activities of Clostridium carboxidivorans P7T
Ahmed, A. 2006. Effects of biomass-generated syngas on cell-growth, product distribution and enzyme activities of Clostridium carboxidivorans P7T. PhD Thesis
Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T
Ahmed, A., Cateni, B. G., Huhnke, R.L. and Lewis, R.S. 2006. Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T. Biomass and Bioenergy. 30, p. 665–672. https://doi.org/10.1016/j.biombioe.2006.01.007
Fermentation of biomass-generated synthesis gas: effects of nitric oxide
Ahmed, A. and Lewis, R.S. 2006. Fermentation of biomass-generated synthesis gas: effects of nitric oxide. Biotechnology and Bioengineering. 97 (5), pp. 1080-1086. https://doi.org/10.1002/bit.21305
Effects of biomass-generated syngas constituents on cell growth, product distribution and hydrogenase activity of clostridium carboxidivorans P7 T
Ahmed, A. and Lewis, R.S. 2005. Effects of biomass-generated syngas constituents on cell growth, product distribution and hydrogenase activity of clostridium carboxidivorans P7 T.
Converting biomass into ethanol using a gasification-fermentation process
Ahmed, A., Lewis, R.S., Cateni, B.G., Huhnke, R.L. and Tanner, R.S. 2004. Converting biomass into ethanol using a gasification-fermentation process.
Ethanol from biomass: effects of biomass-generated producer gas
Ahmed, A. and Lewis, R. S. 2004. Ethanol from biomass: effects of biomass-generated producer gas.
Biomass to ethanol: a holistic approach using gasification-fermentation
Ahmed, A., Lewis, R.S., Huhnke, R.L., Cateni, B.G., Bowser, T.J. and Bellmer, D. 2004. Biomass to ethanol: a holistic approach using gasification-fermentation.