Method for obtaining a glycoprotein composition

Patent


Ahmed, A., Hariharan, R. and Naresh, B.S. 2020. Method for obtaining a glycoprotein composition. Indian Patent 352861
AuthorsAhmed, A., Hariharan, R. and Naresh, B.S.
Patent IDIndian Patent 352861
Abstract

The invention describes a method of production of glycoprotein with a specific glycoform composition. The desired glycoform profile is brought about by altering the culture conditions on the basis of IVCC rather than the age of the culture. Further, the method renders a high product yield.

KeywordsPatent; Invention; Glycoform ; Glycoprotein; Chemistry
Year2020
Related URLhttps://ipindiaservices.gov.in/PublicSearch/PublicationSearch/Eregister
Publication process dates
Deposited02 Dec 2020
Permalink -

https://repository.canterbury.ac.uk/item/8ww47/method-for-obtaining-a-glycoprotein-composition

  • 6
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Fungal biofilms as low-modulus structural biocomposites
Ahmed, A. and Narayanan, R.A. 2020. Fungal biofilms as low-modulus structural biocomposites.
A study on solid state fermentations of Sugarcane Bagasse using different fungi
Pamidipati, S. and Ahmed, A. 2014. A study on solid state fermentations of Sugarcane Bagasse using different fungi.
Bio-processing of agricultural residues to bio-fuels using Neurospora discreta
Pamidipati, S. and Ahmed, A. 2017. Bio-processing of agricultural residues to bio-fuels using Neurospora discreta.
Improved ammonium removal from industrial wastewater through systematic adaptation of wild type Chlorella pyrenoidosa
Ahmed, A., Nimmakayala, J. and Ramesh, A. 2017. Improved ammonium removal from industrial wastewater through systematic adaptation of wild type Chlorella pyrenoidosa. Water Science & Technology. 75 (1), pp. 182-188. https://doi.org/10.2166/wst.2016.507
Degradation of lignin in agricultural residues by locally isolated fungus Neurospora discreta
Pamidipati, S. and Ahmed, A. 2016. Degradation of lignin in agricultural residues by locally isolated fungus Neurospora discreta. Applied Biochemistry and Biotechnology.
Cellulase stimulation during biodegradation of lignocellulosic residues at increased biomass loading
Pamidipati, S. and Ahmed, A. 2018. Cellulase stimulation during biodegradation of lignocellulosic residues at increased biomass loading. Biocatalysis and Biotransformation. https://doi.org/10.1080/10242422.2018.1508284
A first report on competitive inhibition of laccase enzyme by lignin degradation intermediates
Pamidpati, S. and Ahmed, A. 2019. A first report on competitive inhibition of laccase enzyme by lignin degradation intermediates. Folia Microbiologica. https://doi.org/10.1007/s12223-019-00765-5
Influence of carbon source complexity on porosity, water retention and extracellular matrix composition of Neurospora discreta biofilms
Ahmed, A., Narayanan, R. Aravinda and Veni, Abinaya R. 2019. Influence of carbon source complexity on porosity, water retention and extracellular matrix composition of Neurospora discreta biofilms. Journal of Applied Microbiology. https://doi.org/10.1111/jam.14539
Arrested fungal biofilms as low-modulus structural bio-composites: water holds the key
Aravinda Narayanan, R. and Ahmed, A. 2019. Arrested fungal biofilms as low-modulus structural bio-composites: water holds the key. The European Physical Journal E. 42 (134). https://doi.org/10.1140/epje/i2019-11899-2