Improved ammonium removal from industrial wastewater through systematic adaptation of wild type Chlorella pyrenoidosa

Journal article


Ahmed, A., Nimmakayala, J. and Ramesh, A. 2017. Improved ammonium removal from industrial wastewater through systematic adaptation of wild type Chlorella pyrenoidosa. Water Science & Technology. 75 (1), pp. 182-188. https://doi.org/10.2166/wst.2016.507
AuthorsAhmed, A., Nimmakayala, J. and Ramesh, A.
Abstract

A single step process for ammonium removal from nitrogenous industrial effluents with a concomitant generation of algal biomass, which can be used for producing biofuels and other value added products is proposed. A microlagal strain found in the effluent treatment plant of a fertilizer industry in Mumbai, India was systematically adapted to remove up to 700 ppm of ammoniacal nitrogen from industrial wastewater, which is nearly four times higher than the ammonium tolerance reported in the literature as well as other algal strains tested in our laboratory. 18S rRNA sequencing revealed the strain to be Chlorella pyrenoidosa.

Effects of process parameters such as pH, temperature and light intensity on cell growth and ammonium removal by the adapted cells were studied. Optimal conditions were found to be pH of 9, temperature of 30 WC and a light intensity of 3500 Lux for the adapted cells.

KeywordsAmmonium removal; Chlorella pyrenoidosa; fertilizer industry effluent; microalgae; nitrogenous wastewater treatment
Year2017
JournalWater Science & Technology
Journal citation75 (1), pp. 182-188
PublisherIWA Publishing
ISSN0273-1223
Digital Object Identifier (DOI)https://doi.org/10.2166/wst.2016.507
Publication dates
Print09 Jan 2017
Publication process dates
Deposited02 Jul 2019
Accepted author manuscript
Output statusPublished
Permalink -

https://repository.canterbury.ac.uk/item/89015/improved-ammonium-removal-from-industrial-wastewater-through-systematic-adaptation-of-wild-type-chlorella-pyrenoidosa

Download files

  • 19
    total views
  • 13
    total downloads
  • 0
    views this month
  • 2
    downloads this month

Export as

Related outputs

Fungal biofilms as low-modulus structural biocomposites
Ahmed, A. and Narayanan, R.A. 2020. Fungal biofilms as low-modulus structural biocomposites.
Method for obtaining a glycoprotein composition
Ahmed, A., Hariharan, R. and Naresh, B.S. 2020. Method for obtaining a glycoprotein composition. Indian Patent 352861
A study on solid state fermentations of Sugarcane Bagasse using different fungi
Pamidipati, S. and Ahmed, A. 2014. A study on solid state fermentations of Sugarcane Bagasse using different fungi.
Bio-processing of agricultural residues to bio-fuels using Neurospora discreta
Pamidipati, S. and Ahmed, A. 2017. Bio-processing of agricultural residues to bio-fuels using Neurospora discreta.
Degradation of lignin in agricultural residues by locally isolated fungus Neurospora discreta
Pamidipati, S. and Ahmed, A. 2016. Degradation of lignin in agricultural residues by locally isolated fungus Neurospora discreta. Applied Biochemistry and Biotechnology.
Cellulase stimulation during biodegradation of lignocellulosic residues at increased biomass loading
Pamidipati, S. and Ahmed, A. 2018. Cellulase stimulation during biodegradation of lignocellulosic residues at increased biomass loading. Biocatalysis and Biotransformation. https://doi.org/10.1080/10242422.2018.1508284
A first report on competitive inhibition of laccase enzyme by lignin degradation intermediates
Pamidpati, S. and Ahmed, A. 2019. A first report on competitive inhibition of laccase enzyme by lignin degradation intermediates. Folia Microbiologica. https://doi.org/10.1007/s12223-019-00765-5
Influence of carbon source complexity on porosity, water retention and extracellular matrix composition of Neurospora discreta biofilms
Ahmed, A., Narayanan, R. Aravinda and Veni, Abinaya R. 2019. Influence of carbon source complexity on porosity, water retention and extracellular matrix composition of Neurospora discreta biofilms. Journal of Applied Microbiology. https://doi.org/10.1111/jam.14539
Arrested fungal biofilms as low-modulus structural bio-composites: water holds the key
Aravinda Narayanan, R. and Ahmed, A. 2019. Arrested fungal biofilms as low-modulus structural bio-composites: water holds the key. The European Physical Journal E. 42 (134). https://doi.org/10.1140/epje/i2019-11899-2