Degradation of lignin in agricultural residues by locally isolated fungus Neurospora discreta

Journal article


Pamidipati, S. and Ahmed, A. 2016. Degradation of lignin in agricultural residues by locally isolated fungus Neurospora discreta. Applied Biochemistry and Biotechnology.
AuthorsPamidipati, S. and Ahmed, A.
Abstract

Locally isolated fungus, Neurospora discreta, was evaluated for its ability to degrade lignin in two agricultural residues: cocopeat and sugarcane bagasse with varying lignin concentrations and structures. Using Klason’s lignin estimation, high-performance liquid chromatography, and UV-visible spectroscopy, we found that N. discreta was able to degrade up to twice as much lignin in sugarcane bagasse as the well-known white rot fungus Phanerochaete chrysosporium and produced nearly 1.5 times the amount of lignin degradation products in submerged culture. Based on this data, N. discreta is a promising alternative to white rot fungi for faster microbial pre-treatment of agricultural residues.

This paper presents the lignin degrading capability of N. discreta for the first time and also discusses the difference in biodegradability of cocopeat and sugarcane bagasse as seen from the analysis carried out using Fourier transform infrared spectroscopy.

KeywordsLignin biodegradation; Neurospora discreta; White rot fungi ;Lignocellulosic biomass; Cocopeat; Sugarcane bagasse
Year2016
JournalApplied Biochemistry and Biotechnology
PublisherSpringer
ISSN0273-2289
Publication dates
Online03 Nov 2016
Publication process dates
Deposited02 Jul 2019
Accepted23 Oct 2016
Accepted author manuscript
Output statusPublished
Permalink -

https://repository.canterbury.ac.uk/item/89013/degradation-of-lignin-in-agricultural-residues-by-locally-isolated-fungus-neurospora-discreta

  • 16
    total views
  • 15
    total downloads
  • 0
    views this month
  • 1
    downloads this month

Export as

Related outputs

Fungal biofilms as low-modulus structural biocomposites
Ahmed, A. and Narayanan, R.A. 2020. Fungal biofilms as low-modulus structural biocomposites.
Method for obtaining a glycoprotein composition
Ahmed, A., Hariharan, R. and Naresh, B.S. 2020. Method for obtaining a glycoprotein composition. Indian Patent 352861
A study on solid state fermentations of Sugarcane Bagasse using different fungi
Pamidipati, S. and Ahmed, A. 2014. A study on solid state fermentations of Sugarcane Bagasse using different fungi.
Bio-processing of agricultural residues to bio-fuels using Neurospora discreta
Pamidipati, S. and Ahmed, A. 2017. Bio-processing of agricultural residues to bio-fuels using Neurospora discreta.
Improved ammonium removal from industrial wastewater through systematic adaptation of wild type Chlorella pyrenoidosa
Ahmed, A., Nimmakayala, J. and Ramesh, A. 2017. Improved ammonium removal from industrial wastewater through systematic adaptation of wild type Chlorella pyrenoidosa. Water Science & Technology. 75 (1), pp. 182-188. https://doi.org/10.2166/wst.2016.507
Cellulase stimulation during biodegradation of lignocellulosic residues at increased biomass loading
Pamidipati, S. and Ahmed, A. 2018. Cellulase stimulation during biodegradation of lignocellulosic residues at increased biomass loading. Biocatalysis and Biotransformation. https://doi.org/10.1080/10242422.2018.1508284
A first report on competitive inhibition of laccase enzyme by lignin degradation intermediates
Pamidpati, S. and Ahmed, A. 2019. A first report on competitive inhibition of laccase enzyme by lignin degradation intermediates. Folia Microbiologica. https://doi.org/10.1007/s12223-019-00765-5
Influence of carbon source complexity on porosity, water retention and extracellular matrix composition of Neurospora discreta biofilms
Ahmed, A., Narayanan, R. Aravinda and Veni, Abinaya R. 2019. Influence of carbon source complexity on porosity, water retention and extracellular matrix composition of Neurospora discreta biofilms. Journal of Applied Microbiology. https://doi.org/10.1111/jam.14539
Arrested fungal biofilms as low-modulus structural bio-composites: water holds the key
Aravinda Narayanan, R. and Ahmed, A. 2019. Arrested fungal biofilms as low-modulus structural bio-composites: water holds the key. The European Physical Journal E. 42 (134). https://doi.org/10.1140/epje/i2019-11899-2