Influence of carbon source complexity on porosity, water retention and extracellular matrix composition of Neurospora discreta biofilms

Journal article


Ahmed, A., Narayanan, R.A. and Veni, A.R. 2019. Influence of carbon source complexity on porosity, water retention and extracellular matrix composition of Neurospora discreta biofilms. Journal of Applied Microbiology. 128 (4), pp. 1099-1108. https://doi.org/10.1111/jam.14539
AuthorsAhmed, A., Narayanan, R.A. and Veni, A.R.
Abstract

Aims
To evaluate carbon source complexity as a process lever to impact the microstructure, chemical composition and water retention capacity of biofilms produced by Neurospora discreta.

Methods and Results
Biofilms were produced by non‐pathogenic fungus N. discreta, using sucrose, cellulose or lignin as carbon source. Increase in complexity of carbon source from sucrose to lignin resulted in decreased water retention values (WRV) and wet weights of harvested biofilms. Confocal laser scanning microscopy (CLSM) was used to calculate porosity from bright field images, and relative stained areas of cells and carbohydrates from fluorescence imaging of samples stained with Trypan blue and Alexa Fluor 488. Porosity and relative quantity of cells increased with increase in carbon source complexity while the amount of carbohydrates decreased. Chemical analysis of the extracted extracellular matrix (ECM) showed that biofilms grown on more complex carbon sources had lower carbohydrate and protein content, which also explains the lower WRV trend, as carbohydrates are hydrophilic.

Conclusions
The nature of carbon source impacts the metabolic pathway of cells, thereby influencing the relative proportions of ECM and cells. This in turn impacts the microstructure, composition and water content of biofilms.

Significance and Impact of the Study
This work shows that carbon source can be used as process lever to control the properties of biofilms and presents a novel view of biofilms as potentially useful biomaterials.

KeywordsBiotechnology; Applied microbiology and biotechnology; Carbon source
Year2019
JournalJournal of Applied Microbiology
Journal citation128 (4), pp. 1099-1108
PublisherWiley
ISSN1364-5072
1365-2672
Digital Object Identifier (DOI)https://doi.org/10.1111/jam.14539
Official URLhttps://doi.org/10.1111/jam.14539
Related URLhttps://sfam.org.uk/
FunderBirla Institute of Technology and Science, Pilani
Publication dates
Online17 Dec 2019
Publication process dates
Deposited06 Dec 2019
Accepted01 Dec 2019
Accepted author manuscript
Output statusPublished
Licensehttp://onlinelibrary.wiley.com/termsAndConditions#vor
Permalink -

https://repository.canterbury.ac.uk/item/8q144/influence-of-carbon-source-complexity-on-porosity-water-retention-and-extracellular-matrix-composition-of-neurospora-discreta-biofilms

Download files


Accepted author manuscript
  • 47
    total views
  • 27
    total downloads
  • 5
    views this month
  • 2
    downloads this month

Export as

Related outputs

UV-filter pollution: current concerns and future prospects.
de Miranda, L., Harvey, K., Ahmed, A. and Harvey, S. 2021. UV-filter pollution: current concerns and future prospects. Environmental Monitoring and Assessment. 193 (12), p. 840. https://doi.org/10.1007/s10661-021-09626-6
Fungal Solubilisation and Subsequent Microbial Methanation of Coal Processing Wastes.
Ahmed, A. and Sharma, Anima 2021. Fungal Solubilisation and Subsequent Microbial Methanation of Coal Processing Wastes. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-021-03681-y
Fungal biofilms as low-modulus structural biocomposites
Ahmed, A. and Narayanan, R.A. 2020. Fungal biofilms as low-modulus structural biocomposites.
Method for obtaining a glycoprotein composition
Ahmed, A., Hariharan, R. and Naresh, B.S. 2020. Method for obtaining a glycoprotein composition. Indian Patent 352861
A study on solid state fermentations of Sugarcane Bagasse using different fungi
Pamidipati, S. and Ahmed, A. 2014. A study on solid state fermentations of Sugarcane Bagasse using different fungi.
Bio-processing of agricultural residues to bio-fuels using Neurospora discreta
Pamidipati, S. and Ahmed, A. 2017. Bio-processing of agricultural residues to bio-fuels using Neurospora discreta.
Improved ammonium removal from industrial wastewater through systematic adaptation of wild type Chlorella pyrenoidosa
Ahmed, A., Nimmakayala, J. and Ramesh, A. 2017. Improved ammonium removal from industrial wastewater through systematic adaptation of wild type Chlorella pyrenoidosa. Water Science & Technology. 75 (1), pp. 182-188. https://doi.org/10.2166/wst.2016.507
Degradation of lignin in agricultural residues by locally isolated fungus Neurospora discreta
Pamidipati, S. and Ahmed, A. 2016. Degradation of lignin in agricultural residues by locally isolated fungus Neurospora discreta. Applied Biochemistry and Biotechnology.
Cellulase stimulation during biodegradation of lignocellulosic residues at increased biomass loading
Pamidipati, S. and Ahmed, A. 2018. Cellulase stimulation during biodegradation of lignocellulosic residues at increased biomass loading. Biocatalysis and Biotransformation. https://doi.org/10.1080/10242422.2018.1508284
A first report on competitive inhibition of laccase enzyme by lignin degradation intermediates
Pamidpati, S. and Ahmed, A. 2019. A first report on competitive inhibition of laccase enzyme by lignin degradation intermediates. Folia Microbiologica. https://doi.org/10.1007/s12223-019-00765-5
Arrested fungal biofilms as low-modulus structural bio-composites: water holds the key
Aravinda Narayanan, R. and Ahmed, A. 2019. Arrested fungal biofilms as low-modulus structural bio-composites: water holds the key. The European Physical Journal E. 42 (134). https://doi.org/10.1140/epje/i2019-11899-2
Fermentation of syngas to ethanol without media replacement
Ahmed, A., White, A., Hu, P., Broderick, A., Sarager, L., Ralston, T. and Lewis, R.S. 2007. Fermentation of syngas to ethanol without media replacement.
Effects of biomass-generated syngas on cell-growth, product distribution and enzyme activities of Clostridium carboxidivorans P7T
Ahmed, A. 2006. Effects of biomass-generated syngas on cell-growth, product distribution and enzyme activities of Clostridium carboxidivorans P7T. PhD Thesis
Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T
Ahmed, A., Cateni, B. G., Huhnke, R.L. and Lewis, R.S. 2006. Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T. Biomass and Bioenergy. 30, p. 665–672. https://doi.org/10.1016/j.biombioe.2006.01.007
Fermentation of biomass-generated synthesis gas: effects of nitric oxide
Ahmed, A. and Lewis, R.S. 2006. Fermentation of biomass-generated synthesis gas: effects of nitric oxide. Biotechnology and Bioengineering. 97 (5), pp. 1080-1086. https://doi.org/10.1002/bit.21305
Fermentation of synthesis gas to fuel ethanol
Ahmed, A., Lewis, R.S., Cateni, B.G., Huhnke, R.L., Bellmer, D. and Tanner, R.S. 2005. Fermentation of synthesis gas to fuel ethanol.
Effects of biomass-generated syngas constituents on cell growth, product distribution and hydrogenase activity of clostridium carboxidivorans P7 T
Ahmed, A. and Lewis, R.S. 2005. Effects of biomass-generated syngas constituents on cell growth, product distribution and hydrogenase activity of clostridium carboxidivorans P7 T.
Converting biomass into ethanol using a gasification-fermentation process
Ahmed, A., Lewis, R.S., Cateni, B.G., Huhnke, R.L. and Tanner, R.S. 2004. Converting biomass into ethanol using a gasification-fermentation process.
Ethanol from biomass: effects of biomass-generated producer gas
Ahmed, A. and Lewis, R. S. 2004. Ethanol from biomass: effects of biomass-generated producer gas.
Biomass to ethanol: a holistic approach using gasification-fermentation
Ahmed, A., Lewis, R.S., Huhnke, R.L., Cateni, B.G., Bowser, T.J. and Bellmer, D. 2004. Biomass to ethanol: a holistic approach using gasification-fermentation.