References | Abeydeera, L. R., Wang, W. H., Cantley, T. C., Prather, R. S., & Day, B. N. (1998). Presence of β-mercaptoethanol can increase the glutathione content of pig oocytes matured in vitro and the rate of blastocyst development after in vitro fertilization. Theriogenology, 50(5), 747–756. https://doi.org/https://doi.org/10.1016/S0093-691X(98)00180-0 Alvarez, G. M., Dalvit, G. C., Achi, M. V., Miguez, M. S., & Cetica, P. D. (2009). Immature oocyte quality and maturational competence of porcine cumulus-oocyte complexes subpopulations. Biocell, 33(3), 167–177. Anderson, E., & Albertini, D. F. (1976). Gap junctions between the oocyte and companion follicle cells in the mammalian ovary. The Journal of Cell Biology, 71(2), 680–686. https://doi.org/https://doi.org/10.1083/jcb.71.2.680 Bagg, M. A., Nottle, M. B., Armstrong, D. T., & Grupen, C. G. (2007). Relationship between follicle size and oocyte developmental competence in prepubertal and adult pigs. Reproduction, Fertility and Development, 19(7), 797–803. https://doi.org/https://doi.org/10.1071/RD07018 Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300. https://doi.org/https://doi.org/10.1111/j.2517-6161.1995.tb02031.x Bruinsma, J. (2002). World Agriculture: towards 2015/2030: summary report. Food and Agriculture Organization of the United Nations (FAO). Brüssow, K. P., Torner, H., Ratky, J., Hunter, M. G., & Nürnberg, G. (1997). Ovum pick up in swine: the influence of aspiration vacuum pressure on oocyte recovery from preovulatory follicles. Acta Veterinaria Hungarica, 45, 189–196. Dang-Nguyen, T. Q., Somfai, T., Haraguchi, S., Kikuchi, K., Tajima, A., Kanai, Y., & Nagai, T. (2011). In vitro production of porcine embryos: current status, future perspectives and alternative applications. Animal Science Journal, 82(3), 374–382. https://doi.org/https://doi.org/10.1111/j.1740-0929.2011.00883.x Esaki, R., Ueda, H., Kurome, M., Hirakawa, K., Tomii, R., Yoshioka, H., … Nagashima, H. (2004). Cryopreservation of porcine embryos derived from in vitro-matured oocytes. Biology of Reproduction, 71(2), 432–437. https://doi.org/https://doi.org/10.1095/biolreprod.103.026542 Fowler, K. E., Mandawala, A. A., Griffin, D. K., Walling, G. A., & Harvey, S. C. (2018). The production of pig preimplantation embryos in vitro: Current progress and future prospects. Reproductive Biology. https://doi.org/10.1016/j.repbio.2018.07.001 Funahashi, H., Cantley, T. C., & Day, B. N. (1997). Synchronization of meiosis in porcine oocytes by exposure to dibutyryl cyclic adenosine monophosphate improves developmental competence following in vitro fertilization. Biology of Reproduction, 57(1), 49–53. https://doi.org/https://doi.org/10.1095/biolreprod57.1.49 Funahashi, H., Cantley, T. C., Stumpf, T. T., Terlouw, S. L., & Day, B. N. (1994). In vitro development of in vitro-matured porcine oocytes following chemical activation or in vitro fertilization. Biology of Reproduction, 50(5), 1072–1077. https://doi.org/https://doi.org/10.1095/biolreprod50.5.1072 Galeati, G., Modina, S., Lauria, A., & Mattioli, M. (1991). Follicle somatic cells influence pig oocyte penetrability and cortical granule distribution. Molecular Reproduction and Development, 29(1), 40–46. https://doi.org/https://doi.org/10.1002/mrd.1080290107 Gilchrist, R. B., Ritter, L. J., & Armstrong, D. T. (2004). Oocyte–somatic cell interactions during follicle development in mammals. Animal Reproduction Science, 82, 431–446. Kim, J., You, J., Hyun, S., Lee, G., Lim, J., & Lee, E. (2010). Developmental competence of morphologically poor oocytes in relation to follicular size and oocyte diameter in the pig. Molecular Reproduction and Development: Incorporating Gamete Research, 77(4), 330–339. https://doi.org/https://doi.org/10.1002/mrd.21148 Lafleur, M. V. M., Hoorweg, J. J., Joenje, H., Westmijze, E. J., & Retèl, J. (1994). The ambivalent role of glutathione in the protection of DNA against singlet oxygen. Free Radical Research, 21(1), 9–17. https://doi.org/https://doi.org/10.3109/10715769409056550 Lechniak, D., Warzych, E., Pers-Kamczyc, E., Sosnowski, J., Antosik, P., & Rubes, J. (2007). Gilts and sows produce similar rate of diploid oocytes in vitro whereas the incidence of aneuploidy differs significantly. Theriogenology, 68(5), 755–762. https://doi.org/https://doi.org/10.1016/j.theriogenology.2007.06.012 Lee, J., Hyun, S.-H., & Lee, E. (2012). A comparative study on the parthenogenetic development of pig oocytes cultured in north carolina state university-23 and porcine zygote medium-3. J. Emb. Trans, 27, 121–126. Li, H. J., Sutton-McDowall, M. L., Wang, X., Sugimura, S., Thompson, J. G., & Gilchrist, R. B. (2016). Extending prematuration with cAMP modulators enhances the cumulus contribution to oocyte antioxidant defence and oocyte quality via gap junctions. Human Reproduction, 31(4), 810–821. https://doi.org/https://doi.org/10.1093/humrep/dew020 Lin, T., Oqani, R. K., Lee, J. E., Shin, H. Y., & Jin, D. Il. (2016). Coculture with good-quality COCs enhances the maturation and development rates of poor-quality COCs. Theriogenology, 85(3), 396–407. https://doi.org/https://doi.org/10.1016/j.theriogenology.2015.09.001 Long, C. R., Dobrinsky, J. R., & Johnson, L. A. (1999). In vitro production of pig embryos: comparisons of culture media and boars. Theriogenology, 51(7), 1375–1390. https://doi.org/https://doi.org/10.1016/S0093-691X(99)00081-3 Luciano, A. M., Lodde, V., Beretta, M. S., Colleoni, S., Lauria, A., & Modina, S. (2005). Developmental capability of denuded bovine oocyte in a Co‐culture system with intact cumulus‐oocyte complexes: Role of cumulus cells, cyclic adenosine 3′, 5′‐monophosphate, and glutathione. Molecular Reproduction and Development: Incorporating Gamete Research, 71(3), 389–397. https://doi.org/https://doi.org/10.1002/mrd.20304 Ma, W., Hou, Y., Sun, Q. Y., Sun, X. F., & Wang, W. H. (2003). Localization of centromere proteins and their association with chromosomes and microtubules during meiotic maturation in pig oocytes. Reproduction, 126(6), 731–738. Maedomari, N., Kikuchi, K., Ozawa, M., Noguchi, J., Kaneko, H., Ohnuma, K., … Kashiwazaki, N. (2007). Cytoplasmic glutathione regulated by cumulus cells during porcine oocyte maturation affects fertilization and embryonic development in vitro. Theriogenology, 67(5), 983–993. https://doi.org/https://doi.org/10.1016/j.theriogenology.2006.11.012 Marchal, R., Vigneron, C., Perreau, C., Bali-Papp, A., & Mermillod, P. (2002). Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology, 57(5), 1523–1532. https://doi.org/https://doi.org/10.1016/S0093-691X(02)00655-6 Marques, M. G., de Barros, F. R. O., Goissis, M. D., Giassetti, M. I., Assumpção, M. E. O. D., & Visintin, J. A. (2015). Effect of oocyte recovery techniques on in vitro production of swine embryos. Open Journal of Animal Sciences, 5(04), 467. https://doi.org/10.4236/ojas.2015.54048 Mattioli, M., & Barboni, B. (2000). Signal transduction mechanism for LH in the cumulus–oocyte complex. Molecular and Cellular Endocrinology, 161(1–2), 19–23. https://doi.org/https://doi.org/10.1016/S0303-7207(99)00218-X Nagai, T., Ding, J., & Moor, R. M. (1993). Effect of follicle cells and steroidogenesis on maturation and fertilization in vitro of pig oocytes. Journal of Experimental Zoology, 266(2), 146–151. https://doi.org/https://doi.org/10.1002/jez.1402660208 Nagano, M., Katagiri, S., & Takahashi, Y. (2006). Relationship between bovine oocyte morphology and in vitro developmental potential. Zygote, 14(1), 53–61. https://doi.org/https://doi.org/10.1017/S0967199406003510 Niwa, K. (1993). Effectiveness of in vitro maturation and in vitro fertilization techniques in pigs. Journal of Reproduction and Fertility. Supplement, 48, 49–59. Norris, R. P., Freudzon, M., Mehlmann, L. M., Cowan, A. E., Simon, A. M., Paul, D. L., … Jaffe, L. A. (2008). Luteinizing hormone causes MAP kinase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles: one of two paths to meiotic resumption. Development, 135(19), 3229–3238. https://doi.org/10.1242/dev.025494 Norris, R. P., Ratzan, W. J., Freudzon, M., Mehlmann, L. M., Krall, J., Movsesian, M. A., … Jaffe, L. A. (2009). Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development, 136(11), 1869–1878. https://doi.org/10.1242/dev.035238 Park, B., Lee, H., Lee, Y., Elahi, F., Lee, J., Lee, S. T., … Lee, E. (2016). Cilostamide and forskolin treatment during pre-IVM improves preimplantation development of cloned embryos by influencing meiotic progression and gap junction communication in pigs. Theriogenology, 86(3), 757–765. https://doi.org/https://doi.org/10.1016/j.theriogenology.2016.02.029 Petters, R. M., & Wells, K. D. (1993). Culture of pig embryos. Journal of Reproduction and Fertility. Supplement, 48, 61–73. Racowsky, C. (1985). Effect of forskolin on maintenance of meiotic arrest and stimulation of cumulus expansion, progesterone and cyclic AMP production by pig oocyte—cumulus complexes. Journal of Reproduction and Fertility, 74(1), 9–21. https://doi.org/https://doi.org/10.1530/jrf.0.0740009 Rath, D., Niemann, H., & Tao, T. (1995). In vitro maturation of porcine oocytes in follicular fluid with subsequent effects on fertilization and embyo yield in vitro. Theriogenology, 44(4), 529–538. https://doi.org/https://doi.org/10.1016/0093-691X(95)00224-V Sherrer, E. S., Rathbun, T. J., & Davis, D. L. (2004). Fertilization and blastocyst development in oocytes obtained from prepubertal and adult pigs. Journal of Animal Science, 82(1), 102–108. https://doi.org/https://doi.org/10.2527/2004.821102x Sugimura, S., Yamanouchi, T., Palmerini, M. G., Hashiyada, Y., Imai, K., & Gilchrist, R. B. (2018). Effect of pre-in vitro maturation with cAMP modulators on the acquisition of oocyte developmental competence in cattle. Journal of Reproduction and Development. https://doi.org/https://doi.org/10.1262/jrd.2018-009 Sun, Q.-Y., & Nagai, T. (2003). Molecular mechanisms underlying pig oocyte maturation and fertilization. Journal of Reproduction and Development, 49(5), 347–359. https://doi.org/https://doi.org/10.1262/jrd.49.347 Tanghe, S., Van Soom, A., Nauwynck, H., Coryn, M., & de Kruif, A. (2002). Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Molecular Reproduction and Development, 61(3), 414–424. https://doi.org/https://doi.org/10.1002/mrd.10102 Tatemoto, H., Sakurai, N., & Muto, N. (2000). Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells. Biology of Reproduction, 63(3), 805–810. https://doi.org/https://doi.org/10.1095/biolreprod63.3.805 Taylor, R., Condoleo, R., Simons, R., Gale, P., Kelly, L., & Snary, E., (2020). The risk of infection by African swine fever virus in European swine through boar movement and legal trade of pigs and pig meat. Frontiers in Veterinary Science, 6, 486. https://doi.org/10.3389/fvets.2019.00486 Yoshida, M., Ishigaki, K., Nagai, T., Chikyu, M., & Pursel, V. G. (1993). Glutathione concentration during maturation and after fertilization in pig oocytes: relevance to the ability of oocytes to form male pronucleus. Biology of Reproduction, 49(1), 89–94. https://doi.org/https://doi.org/10.1095/biolreprod49.1.89 You, J., Kim, J., Lim, J., & Lee, E. (2010). Anthocyanin stimulates in vitro development of cloned pig embryos by increasing the intracellular glutathione level and inhibiting reactive oxygen species. Theriogenology, 74(5), 777–785. https://doi.org/https://doi.org/10.1016/j.theriogenology.2010.04.002 Zhang, X., Miao, Y., Zhao, J.-G., Spate, L., Bennett, M. W., Murphy, C. N., … Prather, R. S. (2010). Porcine oocytes denuded before maturation can develop to the blastocyst stage if provided a cumulous cell-derived coculture system. Journal of Animal Science, 88(8), 2604–2610. https://doi.org/doi.org/10.2527/jas.2009-2714 |
---|