How might educational research into children’s ideas about light be of use to teachers?

Journal article

Riordan, J. 2014. How might educational research into children’s ideas about light be of use to teachers? Physics Education. 49 (6), pp. 644-653.
AuthorsRiordan, J.

This paper offers a synthesis of research evidence around teaching light to primary and secondary school pupils, as part of the Institute of Physics (IOP) Promoting and Interpreting Physics Education Research (PIPER) project. Conceptual change literature describes many difficulties young people have with understanding the phenomenon of light, and this knowledge can be useful in the classroom. Pupil teacher dialogue is used to illustrate some of the pedagogical challenges teachers face in this topic. This paper highlights a range of influences on pupils from everyday life and from the classroom, with a view to promoting teacher awareness of conceptual change research evidence.

KeywordsLight; conceptual change; science; pedagogy; education; misconception
JournalPhysics Education
Journal citation49 (6), pp. 644-653
PublisherInstitute of Physics
Digital Object Identifier (DOI)
Official URL
Related URL
Publication dates
PrintNov 2014
Publication process dates
Submitted25 Jun 2014
Accepted31 Jul 2014
Deposited05 Nov 2019
Accepted author manuscript
File Access Level
Output statusPublished

Allchin, D. (2001) 'Error Types', Perspectives on Science, 9 (1), pp. 38-58
Allen, M. (2010) Misconceptions in primary science. Maidenhead: Open University Press.
Andersson, B. & Bach, F. (2004) 'On designing and evaluating teaching sequences taking geometrical optics as an example', Science Education, 89 (2), pp. 196-218
Anderson, C. & Smith, E. (1983) Children's conceptions of light and color: Understanding the concept of unseen rays. East Lansing: Michigan State University.
Chi M T H 2013 ‘Two kinds and four sub-types of misconceived knowledge, ways to change it and the learning outcomes’ in: S Vosniadou (Ed.), International Handbook of Research on Conceptual Change (2nd edition) (New Your: Routledge) 49-70Clement, J. (2008) 'The Role of Explanatory Models in Teaching for Conceptual Change', In: S. Vosniadou. , International Handbook Of Research On Conceptual Change (educational Psychology Handbook). New York: Routledge. 417-452.
Darden, L. (1991) Theory Change in Science: Strategies from Mendelian Genetics. New York: Oxford University Press.
Di Leo, J. H. (1999) Interpreting Children's Drawings, Routledge, New York.
diSessa, A. (2006) ' A history of conceptual change research: threads and fault lines', In: K. Sawyer. , The Cambridge Handbook of the Learning Sciences. Cambridge MA: Cambridge University Press. 265-282.
Driver, R., Squires, A., Rushworth, P. & Wood-Robinson, V. (1994) Making sense of secondary science: Research into children's ideas. New York: Routledge.
Duit, R. (2009) Bibliography - STCSE: Students' and Teachers' Conceptions and Science Education. Available at: (Accessed: 9th July 2010)
Edens, K.M. & Potter, E. (2003) ‘Using Descriptive Drawings as a Conceptual Change Strategy in Elementary Science’, School Science and Mathematics, vol. 103, no. 3, pp. 135-144.
Feher, E. & Rice, K. (1988) 'Shadows and anti‐images: Children’s conceptions of light and vision II', Science Education, 72 (5), pp. 637-649
Fetherstonhaugh, A. R. & Treagust, D. F. (1992) 'Students' understanding of light and its properties: Teaching to engender conceptual change', Science Education, 76 (6), pp. 653-672
Goldberg F. M. & McDermott, L. C. (1986) 'Student difficulties in understanding image formation by a plane mirror', The Physics Teacher, 24 (8), pp. 472-480
Gonzalez-Espada, W. J. (2003) 'A Last Chance for Getting It Right: Addressing Alternative Conceptions in the Physical Sciences', The Physics Teacher, 41 (1), pp. 36-38
Guesne, E. (1985) 'Light.', In: R. Driver, E. Guesne and A. Tiberghien. , Children's ideas in science. Milton Keynes, UK: Open University Press. 10-32.
Heywood, D. (2005) 'Primary Teachers' Learning and Teaching about Light: some pedagogic implications for Initial Teacher Training', International Journal of Science Education, 27 (12), pp. 1447-1475
Illeris, K. (2007) How We Learn: Learning and Non-Learning in School and Beyond. London: Routledge.
Inagaki, K. & Hatano, G. (2002) Young children's naive thinking about the biological world. Philadelphia, PA: Psychology Press.
La Rosa, C., Mayer, M., Patrizi, P. & Vicentini-Missoni, M. (1984) 'Common sense knowledge in optics: Preliminary results of an investigation into the properties of light.', International Journal of Science Education, 6 (4), pp. 387-397
Lightman, A. P., Miller, J. D. & Leadbetter, J. B. (1987) Contemporary cosmological beliefs. Conference Paper Cornell University, Ithaca, NY, USA: Paper presented to the second international seminar on misconceptions and educations and educational strategies in science and mathematics.
Meyer, K. & Woodruff, E. (1997) 'Consensually driven explanation in science teaching
', Science Education, 81 (2), pp. 175-194
National Junior College (2014) Available at: (Accessed: 23 July 2014)
Osborne, J. F., Black, P. J., Smith, M. & Meadows, J. (1990) SPACE Research Report: light. Liverpool: Liverpool University Press.
Philips, W. C. (1991) 'Earth Science Misconceptions', Science Teacher, 58 (2), pp. 21-23
Ramadas, J. & Driver, R. (1989) Aspects of secondary students' ideas about light. Leeds: University of Leeds, Centre for Studies in Science and Mathematics Education.
Riordan, J. P. (2014) Techniques, tactics and strategies for conceptual change in school science. PhD Thesis. Canterbury Christ Church University. Unpublished.
Rosch, E. (1975) 'Cognitive representations of semantic categories', Journal of Experimental Psychology, 104 (3), pp. 192-232
Scott, P., Asoko, H. and Driver, R. (1991) 'Teaching for conceptual change: A review of strategies', in R. Duit, F. Goldberg and H. Niedderer, Research in Physics Learning: Theoretical issues and empirical studies. Germany: University of Kiel, pp. 310-329.
Shapiro, B. L. (1994) What Children Bring to Light. New York: Teachers College Press.
Stead, B. F. & Osborne, R. J. (1980) 'Exploring science students' concept of light', Australian Science Teachers' Journal, 26 (3), pp. 84-90
Tiberghien, A., Delacote, G., Ghiglione, R., et B. Matalon, 1980 ‘Conception de la lumière chez l'enfant de 10-12 ans’ Revue française de pédagogie, 50, p. 24-41.
Viennot, L. (2006) 'Teaching rituals and students' intellectual satisfaction', Physics Education, 41 (5), pp. 400-408
Watts, D. M. (1984) 'Learners' alternative frameworks of light
', In: B. Bell, M. Watts and K. Ellington. , Learning, Doing and Understanding in Science, The proceedings of a conference. Woolley Hall, England, 11-13 July, SSCR, London: 69-72.
Watts, D. M. & Gilbert, J. K. (1985) Appraising the understanding of science concepts: light . Guildford: Department of Educational Studies, University of Surrey.
Wellman, H. & Gelman, S. (1992) 'Cognitive development: foundational theories of core domains', Annual review of psychology, 43 (1), pp. 337-375.
Zimmerman, C. (2005) The development of scientific reasoning: What psychologists contribute to an understanding of elementary science learning. Paper commissioned by the National Academies of Science. National Research Council’s Board of Science Education, Consensus Study on Learning Science, Kindergarten through Eighth Grade.
Zylbersztajn, A. & Watts, D. (1982) Throwing Some Light on Colour. University of Surrey: Mimeograph.

Permalink -

Download files

Accepted author manuscript
89143_Hardman and Riordan .pdf
License: CC BY-NC-ND 4.0
File access level: Open

  • 75
    total views
  • 38
    total downloads
  • 3
    views this month
  • 0
    downloads this month

Export as

Related outputs

Pedagogy Analysis Framework: a video-based tool for combining teacher, pupil & researcher perspectives
Riordan, J., Hardman, M. and Cumbers, D. 2021. Pedagogy Analysis Framework: a video-based tool for combining teacher, pupil & researcher perspectives. Research in Science & Technological Education.
A material-dialogic perspective on powerful knowledge and matter within a science classroom
Hardman, M., Riordan, J. and Hetherington, L. A material-dialogic perspective on powerful knowledge and matter within a science classroom. in: Hudson, B., Stolare, M., Gericke, N. and Olin-Scheller, C. (ed.) Powerful knowledge and epistemic quality across school subjects London Bloomsbury Academic.
Riordan, J. and Roberts, M. 2020. Technology. in: Soan, S. (ed.) Why do Teachers Need to Know About Diverse Learning Needs? Strengthening Professional Identity and Well-Being London Bloomsbury Academic.
A method and framework for video based pedagogy analysis.
Riordan, J. 2020. A method and framework for video based pedagogy analysis. Research in Science & Technological Education .
NICER science and religion encounters - year 3 lesson (creation stories)
Riordan, J. 2019. NICER science and religion encounters - year 3 lesson (creation stories). Canterbury Christ Church University
Do teachers deceive?
Riordan, J. 2015. Do teachers deceive? in: Sangster, M. (ed.) Challenging Perceptions in Primary Education: Exploring Issues in Practice London Bloomsbury Academic. pp. 34-37
Techniques, tactics and strategies for conceptual change in school science
Riordan, J. 2014. Techniques, tactics and strategies for conceptual change in school science. PhD Thesis Canterbury Christ Church University School of Teacher Education and Development