Machine learning-based solutions for securing IoT systems against multilayer attacks

Book chapter


Al Sukhni, B., Manna, S., Dave, J. and Zhang, L. 2022. Machine learning-based solutions for securing IoT systems against multilayer attacks. in: Singh Tomar, R., Verma, S., Kumar Chaurasia, B., Singh, V., Abawajy, J. H., Akashe, S., Hsiung, Pao-Ann and Prasad, R. (ed.) Communication, Networks and Computing Third International Conference, CNC 2022, Gwalior, India, December 8–10, 2022, Proceedings, Part I Cham Springer. pp. 140-153
AuthorsAl Sukhni, B., Manna, S., Dave, J. and Zhang, L.
EditorsSingh Tomar, R., Verma, S., Kumar Chaurasia, B., Singh, V., Abawajy, J. H., Akashe, S., Hsiung, Pao-Ann and Prasad, R.
Abstract

IoT systems are prone to security attacks from several IoT layers as most of them possess limited resources and are unable to implement standard security protocols. This paper distinguishes multilayer IoT attacks from single-layer attacks and investigates their functioning. For developing a robust and efficient IDS (intrusion detection system), we have trained a few machine learning (ML) approaches such as NB, DT, and SVM using three standard sets of IoT datasets (Bot-IoT, ToN-IoT, Edge-IIoTset). Instead of using all features, the ML models are trained with similar features of multilayer IoT attacks to use optimal computational power and minimum number of features in the training dataset. The NB model achieves an accuracy of 57%–75%, while the DT model achieves an accuracy of 93%–100%. The outcome of the two ML models reveals that training with similar features possesses a higher accuracy level.

KeywordsIoT device; Multilayer attacks; Machine learning; Similar features
Page range140-153
Year2022
Book titleCommunication, Networks and Computing Third International Conference, CNC 2022, Gwalior, India, December 8–10, 2022, Proceedings, Part I
PublisherSpringer
Output statusPublished
Place of publicationCham
SeriesCommunications in Computer and Information Science
ISBN9783031431395
9783031431401
Publication dates
Online27 Sep 2023
Publication process dates
Deposited18 Oct 2023
Official URLhttps://link.springer.com/chapter/10.1007/978-3-031-43140-1_13
Related URLhttps://link.springer.com/book/10.1007/978-3-031-43140-1
References

1. Ferrag, M.A., Friha, O., Hamouda, D., Maglaras, L. and Janicke, H., 2022. Edge-IIoTset: A new comprehensive realistic cyber security dataset of IoT and IIoT applications for centralized and federated learning. IEEE Access, 10, pp.40281-40306.
2. Anthi, E., Williams, L., Słowińska, M., Theodorakopoulos, G. and Burnap, P., 2019. A supervised intrusion detection system for smart home IoT devices. IEEE Internet of Things Journal, 6(5), pp.9042-9053.
3. Daws, R. (2021) Kaspersky: Attacks on IoT devices double in a year, Internet of Things News. IoT Tech News. Available at: https://www.iottechnews.com/news/2021/sep/07/kaspersky-attacks-on-io... (Accessed: October 31, 2022).
4. S. Khanam, I. B. Ahmedy, M. Y. Idna Idris, M. H. Jaward, and A. Q. Bin Md Sabri, “A survey of security challenges, attacks taxonomy and advanced countermeasures in the internet of things,” IEEE Access, vol. 8, pp. 219709–219743, 2020.
5. S. M. Tahsien, H. Karimipour, and P. Spachos, “Machine learning based solutions for security of Internet of Things (IoT): A survey,” J. Netw. Comput. Appl., vol. 161, no. 102630, p. 102630, 2020.
6. M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and M. Guizani, “A survey of machine and deep learning methods for internet of things (IoT) security,” IEEE Commun. Surv. Tutor., vol. 22, no. 3, pp. 1646–1685, 2020.
7. P. Malhotra, Y. Singh, P. Anand, D. K. Bangotra, P. K. Singh, and W.-C. Hong, “Internet of Things: Evolution, concerns and security challenges,” Sensors (Basel), vol. 21, no. 5, p. 1809, 2021.
8. V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A survey on IoT security: Application areas, security threats, and solution architectures,” IEEE Access, vol. 7, pp. 82721–82743, 2019.
9. I. Butun, P. Osterberg, and H. Song, “Security of the internet of things: Vulnerabilities, attacks, and countermeasures,” IEEE Commun. Surv. Tutor., vol. 22, no. 1, pp. 616–644, 2020.
10. IBM (2022) IBM Security X-Force Threat Intelligence Index, Ibm.com. Available at: https://www.ibm.com/reports/threat-intelligence/ (Accessed: November 1, 2022).
11. Rehman, S. ur, Khaliq, M., Imtiaz, S. I., Rasool, A., Shafiq, M., Javed, A. R., Jalil, Z., & Bashir, A. K. (2021). DIDDOS: An approach for detection and identification of Distributed Denial of Service (DDoS) cyberattacks using Gated Recurrent Units (GRU). Future Generations Computer Systems: FGCS, 118, 453–466. https://doi.org/10.1016/j.future.2021.01.022.
12. S. S. Priya, M. Sivaram, D. Yuvaraj, and A. Jayanthiladevi, “Machine Learning based DDOS Detection,” in 2020 International Conference on Emerging Smart Computing and Informatics (ESCI), 2020.
13. R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning DDoS detection for consumer Internet of Things devices,” arXiv [cs.CR], 2018.
14. Mukhtar, N. et al. (2020) “Improved hybrid approach for side-channel analysis using efficient convolutional neural network and dimensionality reduction,” IEEE access: practical innovations, open solutions, 8, pp. 184298–184311. doi: 10.1109/access.2020.3029206.
15. M. Zolanvari, M. A. Teixeira, L. Gupta, K. M. Khan, and R. Jain, “Machine learning-based network vulnerability analysis of industrial internet of things,” IEEE Internet Things J., vol. 6, no. 4, pp. 6822–6834, 2019.
16. E. Anthi, L. Williams, M. Slowinska, G. Theodorakopoulos, and P. Burnap, “A supervised intrusion detection system for smart home IoT devices,” IEEE Internet Things J., vol. 6, no. 5, pp. 9042–9053, 2019.
17. R. Ahmad and I. Alsmadi, “Machine learning approaches to IoT security: A systematic literature review,” Internet of Things, vol. 14, no. 100365, p. 100365, 2021.
18. H. F. Atlam and G. B. Wills, IoT Security, Privacy, Safety and Ethics. Cham: Springer International Publishing, 2020, pp. 123–149.
19. A. Mitrokotsa, M. Rieback, and A. Tanenbaum, “Classifying rfid attacks and defenses,” Information Systems Frontiers, vol. 12, pp. 491–505, 11 2010.
20. Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and F. Ahmad, “Network intrusion detection system: A systematic study of machine learning and deep learning approaches,” Trans. emerg. telecommun. technol., vol. 32, no. 1, 2021.
21. R. Kumar and R. Sharma, “Leveraging blockchain for ensuring trust in iot: A survey,” Journal of King Saud University - Computer and Information Sciences, 2021.
22. Ferrag, M. A. et al. (2020) “RDTIDS: Rules and decision tree-based intrusion detection system for Internet-of-Things networks,” Future internet, 12(3), p. 44.
23. Manesh, M.R. and Kaabouch, N., 2019. Cyber-attacks on unmanned aerial system networks: Detection, countermeasure, and future research directions. Computers & Security, 85, pp.386-401.
24. Nawir, M., Amir, A., Yaakob, N. and Lynn, O.B., 2016, August. Internet of Things (IoT): Taxonomy of security attacks. In 2016 3rd international conference on electronic design (ICED) (pp. 321-326). IEEE.
25. Alhowaide, A., Alsmadi, I. and Tang, J. (2021) “Ensemble Detection Model for IoT IDS,” Internet of Things (Netherlands), 16. doi:10.1016/j.iot.2021.100435.
26. A. R. Gad, A. A. Nashat, and T. M. Barkat, “Intrusion detection system using machine learning for vehicular ad hoc networks based on ToN-IoT dataset,” IEEE Access, vol. 9, pp. 142206–142217, 2021.

Permalink -

https://repository.canterbury.ac.uk/item/961q7/machine-learning-based-solutions-for-securing-iot-systems-against-multilayer-attacks

  • 111
    total views
  • 0
    total downloads
  • 5
    views this month
  • 0
    downloads this month

Export as

Related outputs

Impact of CDIO framework pedagogical approach adoption on the student learning and experience
Nortcliffe, A., Matei, G., Malik, M., Manna, S., Sheikholeslami, G. and James, H. 2024. Impact of CDIO framework pedagogical approach adoption on the student learning and experience.
Design of IoT-based smart energy meter for e-billing and prepaid electricity
Sinha, D., Bhrahmachary, S., Bhattacharya, S., Chaudhuri, N., Manna, S. and Bandyopadhyay, C. 2024. Design of IoT-based smart energy meter for e-billing and prepaid electricity. https://doi.org/10.1007/978-981-97-3485-6_22
Bio-inspired soft pneumatic gripper for agriculture harvesting
Clark, A., Goodsell-Carpenter, L., Buckow, P., Hewett, D., White, F., Imam, A., Naz, N., Robinson, B., Manna, S. and Ahmed, A. 2024. Bio-inspired soft pneumatic gripper for agriculture harvesting.
A qualitative review of educational robots for STEM: Technical features and impacts
Manna, Soumya Kanti, Azhar, M. A. Hannan Bin and Greace, Ann 2024. A qualitative review of educational robots for STEM: Technical features and impacts. in: Proceedings of the International Convention MIPRO IEEE.
Utilization of ChatGPT in CDIO projects to enhance the literacy of international students
Manna, S., Williams, S., Richmond-Fuller, A. and Nortcliffe, A. 2024. Utilization of ChatGPT in CDIO projects to enhance the literacy of international students.
Innovative assistive device to enhance wrist drop treatment in patients
Trainer, C., Manna, S. and Azhar, H. 2024. Innovative assistive device to enhance wrist drop treatment in patients. in: Costin, H-N., Magjarević, R. and Petroiu, G. G. (ed.) Advances in Digital Health and Medical Bioengineering: Proceedings of the 11th International Conference on E-Health and Bioengineering, EHB-2023, November 9–10, 2023, Bucharest, Romania – Volume 2: Health Technology Assessment, Biomedical Signal Processing, Medicine and Informatics Cham Springer. pp. 489-497
Tele-controlled upper arm exoskeleton for post-stroke recovery
Manna, S., Khan, A., Dilley, O. and Azhar, H. 2024. Tele-controlled upper arm exoskeleton for post-stroke recovery. in: Costin, H-N, Magjarević, R. and Petroiu, G. G. (ed.) Advances in Digital Health and Medical Bioengineering Cham Springer. pp. 478-488
Investigating security issues (multilayer attacks) on IoT devices using machine learning
Al Sukhni, B., Manna, S., Dave, J. and Zhang, L. 2024. Investigating security issues (multilayer attacks) on IoT devices using machine learning.
Safeguarding IoMT: Semi-automated Intrusion Detection System (SAIDS) for detecting multilayer attacks
Al Sukhni, B., Manna, S., Dave, J. and Zhang, L. 2024. Safeguarding IoMT: Semi-automated Intrusion Detection System (SAIDS) for detecting multilayer attacks.
An interactive web portal for customised telerehabilitation in neurological care
Hannan Bin Azhar, M A, Mészáros, Zoltán, Islam, Tasmina and Manna, Soumya K. 2023. An interactive web portal for customised telerehabilitation in neurological care. in: 2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) IEEE. pp. 1814-1821
Exploring optimal set of features in machine learning for improving IoT multilayer security
Al Sukhni, B., Manna, S., Dave, J. and Zhang, Leishi 2023. Exploring optimal set of features in machine learning for improving IoT multilayer security. 2023 IEEE 9th World Forum on Internet of Things (WF-IoT). https://doi.org/10.1109/wf-iot58464.2023.10539376
Integration of graduate employability skills through industry outsourced CDIO project
Manna, S., Joyce, N. and Nortcliffe, A. 2023. Integration of graduate employability skills through industry outsourced CDIO project. in: Lyng, R., Bennedsen, J., Bettaied, L., Bodsberg, N. R., Edstrom, K., Guojonsdottir, M. S., Roslof, J., Solbjord, O. K. and Oien, G. (ed.) The 19th CDIO International Conference: Proceedings - Full Papers NTNU SEED. pp. 425-435
A review of privacy-preserving federated learning, deep learning, and machine learning IIoT and IoTs solutions
Obarafor, Victor, Qi, Man and Zhang, L. 2023. A review of privacy-preserving federated learning, deep learning, and machine learning IIoT and IoTs solutions. in: 2023 8th IEEE International Conference on Signal and Image Processing (ICSIP) Wuxi, China IEEE. pp. 1074-1078
The impact of system transparency on analytical reasoning
Hepenstal, S., Zhang, L. and Wong, B. 2023. The impact of system transparency on analytical reasoning. in: CHI '23: CHI Conference on Human Factors in Computing Systems, Hamburg Germany, April 23 - 28, 2023 New York ACM.
The impact of system transparency on analytical reasoning
Hepenstal, S., Zhang, L. and Wong, B.L.W. 2023. The impact of system transparency on analytical reasoning.
Optimal locations and computational frameworks of FSR and IMU sensors for measuring gait abnormalities
Manna, S., Azhar, H. and Greace, A. 2023. Optimal locations and computational frameworks of FSR and IMU sensors for measuring gait abnormalities. Heliyon. 9 (4), p. e15210. https://doi.org/10.1016/j.heliyon.2023.e15210
Investigating the security issues of multi-layer IoT attacks using machine learning techniques
Al Sukhni, Badeea, Dave, Jugal M., Manna, Soumya K. and Zhang, Leishi 2022. Investigating the security issues of multi-layer IoT attacks using machine learning techniques. in: 2022 Human-Centered Cognitive Systems (HCCS) IEEE.
Cyber physical system: Security challenges in Internet of Things system
Mohanta, Bhabendu Kumar, Dehury, Mohan Kumar, Sukhni, Badeea Al and Mohapatra, Niva 2022. Cyber physical system: Security challenges in Internet of Things system. in: 2022 Sixth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC) IEEE.
Investigating the security issues of multi-layer IoMT attacks using machine learning techniques
Al Sukhni, B., Manna, S., Dave, J. and Zhang, L. 2022. Investigating the security issues of multi-layer IoMT attacks using machine learning techniques.
Designing a system to mimic expert cognition: An initial prototype
Hepenstal, Sam, Zhang, Leishi and William Wong, B. L. 2022. Designing a system to mimic expert cognition: An initial prototype. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 66 (1), pp. 2057-2061. https://doi.org/10.1177/1071181322661092
Accuracy and repeatability study of an elbow exoskeleton for multistage exercises
Manna, Soumya K 2022. Accuracy and repeatability study of an elbow exoskeleton for multistage exercises. in: 2022 20th International Conference on Mechatronics - Mechatronika (ME) IEEE.
A smart and home-based telerehabilitation tool for patients with neuromuscular disorder
Manna, Soumya K., Hannan, M. A., Azhar, B., Smith, D. and Islam, T. 2022. A smart and home-based telerehabilitation tool for patients with neuromuscular disorder. IEEE. https://doi.org/10.1109/iecbes54088.2022.10079410
Evaluation of students’ performance in CDIO projects through blended learning
Manna, S., Battikh, N., Nortcliffe, A. and Camm, J. 2022. Evaluation of students’ performance in CDIO projects through blended learning.
A smart and secure IoMT tele-neurorehabilitation framework for post-stroke patients
Manna, S., Azhar, H. and Sakel, M. 2022. A smart and secure IoMT tele-neurorehabilitation framework for post-stroke patients. in: Bhaumik, S., Chattopadhyay, S., Chattopadhyay, T. and Bhattacharya, S. (ed.) Proceedings of International Conference on Industrial Instrumentation and Control ICI2C 2021 Singapore Springer. pp. 11-20
Enhancing hands-on skills under capstone CDIO project using blended learning approach
Manna, S., Battikh, N. and Camm, J. 2021. Enhancing hands-on skills under capstone CDIO project using blended learning approach . Sheffield
An analysis of expertise in intelligence analysis to support the design of human-centered artificial intelligence
Hepenstal, S., Zhang, L. and Wong, BL William 2021. An analysis of expertise in intelligence analysis to support the design of human-centered artificial intelligence. https://doi.org/10.1109/SMC52423.2021.9659095
Automated identification of insight seeking behaviours, strategies and rules: a preliminary study
Hepenstal, S., Zhang, L. and Wong, BL William 2021. Automated identification of insight seeking behaviours, strategies and rules: a preliminary study. Sage Journals: Proceedings of the Human Factors and Ergonomics Society Annual Meeting . (65), pp. 1269-1273. https://doi.org/https://doi.org/10.1177/1071181321651348
An inclusive student-led online class test during the pandemic
Manna, S. and Azhar, H. 2021. An inclusive student-led online class test during the pandemic . Assessment and Feedback Symposium 2021.
A granular computing approach to provide transparency of intelligent systems for criminal investigations
Zhang, L. 2021. A granular computing approach to provide transparency of intelligent systems for criminal investigations. in: Pedrycz, W. and Chen, S.-M. (ed.) Interpretable Artificial Intelligence: A Perspective of Granular Computing Cham Springer.
Developing conversational agents for use in criminal investigations
Hepenstal, S., Zhang, L., Kodagoda N. and Wong B.L.W 2021. Developing conversational agents for use in criminal investigations. ACM Transactions on Interactive Intelligent Systems. 11 (3-4), pp. 1-35. https://doi.org/10.1145/3444369
Adaptive and flexible online learning during Covid19 lockdown
Manna, S., Nortcliffe, A., Sheikholeslami, G. and Richmond-Fuller, A. 2021. Adaptive and flexible online learning during Covid19 lockdown.
Developing engineering growth mindset through CDIO outreach activities
Manna, S., Nortcliffe, A. and Sheikholeslami, G. 2020. Developing engineering growth mindset through CDIO outreach activities. in: Proceedings of the 16th International CDIO Conference Gothenburg, Sweden CDIO.
Design of a game-based rehabilitation system using Kinect sensor
Manna, S. and Dubuy, V. N. 2019. Design of a game-based rehabilitation system using Kinect sensor. Minneapolis, MN, USA ASME.
Assessment of joint parameters in a Kinect sensor based rehabilitation game
Manna, S. and Dubey, V. N. 2019. Assessment of joint parameters in a Kinect sensor based rehabilitation game. Anaheim, California, USA ASME.
Rehabilitation strategy for post-stroke recovery using an innovative elbow exoskeleton
Manna, S. and Dubey, V. N. 2019. Rehabilitation strategy for post-stroke recovery using an innovative elbow exoskeleton. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 233 (6), pp. 668-680. https://doi.org/10.1177/0954411919847058
A portable elbow exoskeleton for three stages of rehabilitation
Manna, S. and Dubey, V. N. 2019. A portable elbow exoskeleton for three stages of rehabilitation. Journal of Mechanisms and Robotics. 11 (6), p. 065002. https://doi.org/10.1115/1.4044535