References | 1. UK Government. The Ionising Radiation (Medical Exposure) Regulations 2017. UK Statutory Instruments; 2017. 2. Hayre C, Bungay H, Jeffery C, Cobb C, Atutornu J. Can placing lead-rubber inferolateral to the light beam diaphragm limit ionising radiation to multiple radiosensitive organs? Radiography. 2018;24(1):15-21. doi:10.1016/j.radi.2017.09.002 3. Roser P, Zhong X, Birkhold A, et al. Simultaneous Estimation of X-Ray Back-Scatter and Forward-Scatter Using Multi-task Learning. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, Proceedings, Part II 23 . ; 2020:199-208. doi:10.1007/978-3-030-59713-9_20 4. Boone MN, Vlassenbroeck J, Peetermans S, van Loo D, Dierick M, van Hoorebeke L. Secondary radiation in transmission-type X-ray tubes: Simulation, practical issues and solution in the context of X-ray microtomography. Nucl Instrum Methods Phys Res A. 2012;661(1):7-12. doi:10.1016/j.nima.2011.09.046 5. Shaw DJ, Crawshaw I, Rimmer SD. Effects of tube potential and scatter rejection on image quality and effective dose in digital chest X-ray examination: An anthropomorphic phantom study. Radiography. 2013;19(4):321-325. doi:10.1016/j.radi.2013.07.007 6. Cho PK. Distribution of the Scatter Ray on Chest X-ray Examinations. The Journal of the Korea Contents Association. 2012;12(7):255-260. doi:10.5392/JKCA.2012.12.07.255 7. Oh HJ, Kim SS, Kim YI, et al. A study on the directional dependence of scatter ray in radiography. Journal of radiological science and technology . 1995;18(1):63-67. 8. Geleijns J, Schultze Kool LJ, Zoetelief J, Zweers D, Broerse JJ. Image Quality and Dosimetric Aspects of Chest X Ray Examinations: Measurements with Various Types of Phantoms. Radiat Prot Dosimetry. 1993;49(1-3):83-88. doi:10.1093/rpd/49.1-3.83 9. Veldkamp WJH, Kroft LJM, Boot M v., Mertens BJA, Geleijns J. Contrast-detail evaluation and dose assessment of eight digital chest radiography systems in clinical practice. Eur Radiol. 2006;16(2):333-341. doi:10.1007/s00330-005-2887-6 10. Ma WK, Hogg P, Tootell A, et al. Anthropomorphic chest phantom imaging – The potential for dose creep in computed radiography. Radiography. 2013;19(3):207-211. doi:10.1016/j.radi.2013.04.002 11. Al-Murshedi S, Hogg P, England A. Relationship between body habitus and image quality and radiation dose in chest X-ray examinations: A phantom study. Physica Medica. 2019;57:65-71. doi:10.1016/j.ejmp.2018.12.009 12. Burrage JW, Rampant PL, Beeson BP. Scatter and transmission doses from several pediatric X-ray examinations in a nursery. Pediatr Radiol. 2003;33(10):704-708. doi:10.1007/s00247-003-0999-1 13. Trinh AM, Schoenfeld AH, Levin TL. Scatter radiation from chest radiographs: is there a risk to infants in a typical NICU? Pediatr Radiol. 2010;40(5):704-707. doi:10.1007/s00247-009-1474-4 14. UK Government. The Ionising Radiations Regulations 2017 . UK Government; 2017. Accessed October 4, 2022. https://www.legislation.gov.uk/uksi/2017/1075/schedule/3/made 15. McVey G, Weatherburn H. A study of scatter in diagnostic X-ray rooms. Br J Radiol. 2004;77(913):28-38. doi:10.1259/bjr/93969091 16. Simpkin DJ, Dixon RL. Secondary Shielding Barriers for Diagnostic X-Ray Facilities. Health Phys. 1998;74(3):350-365. doi:10.1097/00004032-199803000-00008 17. Landauer. ⅛" x ⅛" x 0.15" TLD-100H . TLD chip: single point radiation assessments. Published 2022. Accessed October 4, 2022. https://www.landauer.co.uk/produit/tld-chip-single-point-radiation-a... 18. Carbolite Gero. TLD/3 Rapid Cooling Oven . Accessed October 10, 2022. https://www.carbolite-gero.com/products/ovens/industrial-ovens/tld-r... 19. Vosper M. Dosimetry 13.6-13.11 . In: A. Ramlaul, ed. Medical Imaging and Radiotherapy Research: Skills and Strategies. Springer International Publishing AG ; 2020:243-251. 20. Siemens Healthineers AG. X-ray tube Opti 150/30/50HC-100. Published online 2009. 21. Saint-Gobain crystals and detectors. Thermo Fisher WinREMS software (v.PL-26732.8.1.0.0) . Published online 2012. 22. Thermo Electron Corporation. Thermo Fisher Scientific Harshaw TLD Model 5500 Reader with WinREMS Operator’s Manual (5500-0-S-0399-001-S1) .; 2005. 23. Stratakis J, Papadakis A. Chapter 1 Dosimetry. In: Radiation Dose Management of Pregnant Patients, Pregnant Staff and Paediatric Patients. IOP Publishing; 2019. Accessed October 4, 2022. https://iopscience.iop.org/chapter/978-0-7503-1317-9/bk978-0-7503-13... 24. Corredor CE. Dose Analysis by Radiation Treatment Planning System (TPS) Software Vs. Thermoluminescent Dosimeters Output. University of Tennessee ; 2004. 25. Bos AJJ. High sensitivity thermoluminescence dosimetry. Nucl Instrum Methods Phys Res B. 2001;184(1-2):3-28. doi:10.1016/S0168-583X(01)00717-0 26. Thermo Electron Corporation. Thermo Fisher Scientific Harshaw TLD Model 5500 Reader with WinREMS Operator’s Manual (5500-W-O-0805-006). .; 2005. 27. Hanna DW. Development and Optimization of a Thermoluminescent Dosimeter (TLD) Analyser System for Low-Dose Measurements Utilizing Photon Counting Techniques. Kansas State University; 1979. 28. Alderson SW, Lanzl LH, Rollins M, Spira J. An instrumented phantom system for analog computation of treatment plans. Am J Roentgenol Radium Ther Nucl Med. 1962;87:185-195. 29. AGFA Healthcare. NX3.0 Muscia Acquisition Workstation, AGFA DX-D 40C cassette 43x35cm. Published online 2015. 30. Winslow JF, Hyer DE, Fisher RF, Tien CJ, Hintenlang DE. Construction of anthropomorphic phantoms for use in dosimetry studies. J Appl Clin Med Phys. 2009;10(3):195-204. doi:10.1120/jacmp.v10i3.2986 31. Adam Rouilly. AR10A anthropomorphic X-ray/Radiographic positioning Doll. Published online 2020. Accessed May 27, 2023. https://www.adam-rouilly.co.uk/products/clinical-skills-simulators/x... 32. ProtecX Medical. One-Piece Regular Lead Apron 0.25 Equivalence. ProtecX Medical . Published 2018. Accessed November 11, 2022. https://www.protecx.co.uk/shop/essential-tailored/ 33. ProtecX Medical. Thyroid Collar 0.35 Lead Equivalence. ProtecX Medical. Published 2018. Accessed November 11, 2022. https://www.protecx.co.uk/shop/thyroid-collar/ 34. International Commission on Radiological Protection. The 2007 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP . 2007;103. 35. Lockwood P, Mitchell M. An assessment of the dose and image quality difference between AP and PA positioned adult radiographic knee examinations. J Med Imaging Radiat Sci. 2023;54(1):123-134. doi:10.1016/j.jmir.2022.12.004 36. Microsoft 365. Excel. Published online 2022. 37. Marshall G, Jonker L. An introduction to inferential statistics: A review and practical guide. Radiography. 2011;17(1):e1-e6. doi:10.1016/j.radi.2009.12.006 38. Flinton DM, Malamateniou C. Quantitative Methods and Analysis. In: Ramlaul A, ed. Medical Imaging and Radiotherapy Research: Skills and Strategies. 2nd ed. Springer; 2020:273-322. 39. Lakhwani OP, Dalal V, Jindal M, Nagala A. Radiation protection and standardization. J Clin Orthop Trauma. 2019;10(4):738-743. doi:10.1016/j.jcot.2018.08.010 40. Xie Z, Liao X, Kang Y, Zhang J, Jia L. Radiation Exposure to Staff in Intensive Care Unit with Portable CT Scanner. Biomed Res Int. 2016;2016:1-4. doi:10.1155/2016/5656480 41. Linet MS, Kim KP, Miller DL, Kleinerman RA, Simon SL, de Gonzalez AB. Historical Review of Occupational Exposures and Cancer Risks in Medical Radiation Workers. Radiat Res. 2010;174(6b):793-808. doi:10.1667/RR2014.1 42. Martin CJ. A review of radiology staff doses and dose monitoring requirements. Radiat Prot Dosimetry. 2009;136(3):140-157. doi:10.1093/rpd/ncp168 43. Oyar O, Kislalioglu A. How protective are the lead aprons we use against ionizing radiation. Diagnostic and Interventional Radiology. Published online 2011. doi:10.4261/1305-3825.DIR.4526-11.1 44. Cupitt JM, Vinayagam S, McConachie I. Radiation exposure of nurses on an intensive care unit. Anaesthesia. 2001;56(2):183-183. doi:10.1046/j.1365-2044.2001.01870.x 45. UK Government. Ionising Radiation: Dose Comparisons. Ionising Radiation: Dose Comparisons. Published March 18, 2011. Accessed May 2, 2023. https://www.gov.uk/government/publications/ionising-radiation-dose-c... 46. Hayre CM, Bungay H, Jeffery C. How effective are lead-rubber aprons in protecting radiosensitive organs from secondary ionizing radiation? Radiography. 2020;26(4):e264-e269. doi:10.1016/j.radi.2020.03.013 47. Johansen S, Hauge IHR, Hogg P, et al. Are Antimony-Bismuth Aprons as Efficient as Lead Rubber Aprons in Providing Shielding against Scattered Radiation? J Med Imaging Radiat Sci. 2018;49(2):201-206. doi:10.1016/j.jmir.2018.02.002 48. Cheon BK, Kim CL, Kim KR, et al. Radiation safety: a focus on lead aprons and thyroid shields in interventional pain management. Korean J Pain. 2018;31(4):244-252. doi:10.3344/kjp.2018.31.4.244 49. Mitchell EL, Furey P. Prevention of radiation injury from medical imaging. J Vasc Surg. 2011;53(1):22S-27S. doi:10.1016/j.jvs.2010.05.139 50. Balonov MI, Shrimpton PC. Effective dose and risks from medical x-ray procedures. Ann ICRP. 2012;41(3-4):129-141. doi:10.1016/j.icrp.2012.06.002 51. Goldhill DR, McNarry AF, Hadjianastassiou VG, Tekkis PP. The longer patients are in hospital before Intensive Care admission the higher their mortality. Intensive Care Med. 2004;30(10):1908-1913. doi:10.1007/s00134-004-2386-2 52. Menéndez R, Cremades MJ, Martínez-Moragón E, Soler JJ, Reyes S, Perpiñá M. Duration of length of stay in pneumonia: influence of clinical factors and hospital type. European Respiratory Journal. 2003;22(4):643-648. doi:10.1183/09031936.03.00026103 |
---|