Transformers only look once with nonlinear combination for real-time object detection

Journal article


Xia, R., Li, G., Huang, Z., Pang, Y. and Qi, M. 2022. Transformers only look once with nonlinear combination for real-time object detection. Neural Computing and Applications. https://doi.org/10.1007/s00521-022-07333-y
AuthorsXia, R., Li, G., Huang, Z., Pang, Y. and Qi, M.
Abstract

In this article, a novel real-time object detector called Transformers Only Look Once (TOLO) is proposed to resolve two problems. The first problem is the inefficiency of building long-distance dependencies among local features for amounts of modern real-time object detectors. The second one is the lack of inductive biases for vision Transformer networks with heavily computational cost. TOLO is composed of Convolutional Neural Network (CNN) backbone, Feature Fusion Neck (FFN), and different Lite Transformer Heads (LTHs), which are used to transfer the inductive biases, supply the extracted features with high-resolution and high-semantic properties, and efficiently mine multiple long-distance dependencies with less memory overhead for detection, respectively.

Moreover, to find the massive potential correct boxes during prediction, we propose a simple and efficient nonlinear combination method between the object confidence and the classification score. Experiments on the PASCAL VOC 2007, 2012, and the MS COCO 2017 datasets demonstrate that TOLO significantly outperforms other state-of-the-art methods with a small input size. Besides, the proposed nonlinear combination method can further elevate the detection performance of TOLO by boosting the results of potential correct predicted boxes without increasing the training process and model parameters.

KeywordsReal-time object detector; TOLO; Vision Transformer networks; Non-linear combination
Year2022
JournalNeural Computing and Applications
PublisherSpringer Nature
ISSN0941-0643
1433-3058
Digital Object Identifier (DOI)https://doi.org/10.1007/s00521-022-07333-y
Official URLhttps://link.springer.com/article/10.1007/s00521-022-07333-y
Publication dates
Online21 May 2022
Publication process dates
Accepted19 Apr 2022
Deposited30 Jun 2022
Accepted author manuscript
License
File Access Level
Open
Output statusPublished
References

Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp 1440–1448

Ren S, He K, Girshick R, Sun J (2016) Faster r-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149

Article

Google Scholar

Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) Ssd: single shot multibox detector. In: European conference on computer vision. Springer, pp 21–37

Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767

Law H, Deng J (2018) Cornernet: Detecting objects as paired keypoints. In: Proceedings of the European conference on computer vision (ECCV), pp 734–750

Duan K, Bai S, Xie L, Qi H, Huang Q, Tian Q (2019) Centernet: keypoint triplets for object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 6569–6578

Tian Z, Shen C, Chen H, He T (2019) Fcos: Fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 9627–9636

Wang X, Girshick R, Gupta A, He K (2018) Non-local neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7794–7803

Luo W, Li Y, Urtasun R, Zemel R (2016) Understanding the effective receptive field in deep convolutional neural networks. In: Proceedings of the 30th international conference on neural information processing systems, pp 4905–4913

Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132–7141

Woo S, Park J, Lee Y, Kweon S (2018) Cbam: convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp 3–19

Fu J, Liu J, Tian H, Li Y, Bao Y, Fang Z, Lu H (2019) Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 3146–3154

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008

Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, et al. (2020) An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929

Touvron H, Cord M, Douze M, Massa F, Sablayrolles A, Jégou H (2021) Training data-efficient image transformers & distillation through attention. In: International conference on machine learning. PMLR, pp 10347–10357

Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030

d’Ascoli S, Touvron H, Leavitt M, Morcos A, Biroli G, Sagun L (2021) Convit: improving vision transformers with soft convolutional inductive biases. arXiv preprint arXiv:2103.10697

Li Y, Zhang K, Cao J, Timofte R, Van Gool L (2021) Localvit: bringing locality to vision transformers. arXiv preprint arXiv:2104.05707

Wang W, Xie E, Li X, Fan DP, Song K, Liang D, Lu T, Luo P, Shao L (2021) Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. arXiv preprint arXiv:2102.12122

Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, Lu L, Yuille AL, Zhou Y (2021) Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306

Wu S, Li X, Wang X (2020) Iou-aware single-stage object detector for accurate localization. Image Vis Comput 97:103911

Article

Google Scholar

He Y, Zhang X, Savvides M, Kitani K (2018) Softer-NMS: rethinking bounding box regression for accurate object detection, vol 2, no. 3. arXiv preprint arXiv:1809.08545

Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (VOC) challenge. Int J Comput Vis 88(2):303–338

Article

Google Scholar

Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: common objects in context. In: European conference on computer vision. Springer, pp 740–755

Zhang S, Chi C, Yao Y, Lei Z, Li SZ (2020) Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 9759–9768

He K, Gkioxari G, P. Dollár, Girshick R (2017) Mask r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp 2961–2969

Lin TY, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp 2980–2988

Leng J, Liu Y (2019) An enhanced SSD with feature fusion and visual reasoning for object detection. Neural Comput Appl 31(10):6549–6558

Article

Google Scholar

Lim JS, Astrid M, Yoon HJ, Lee SI (2019) Small object detection using context and attention. arXiv preprint arXiv:1912.06319

Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S (2020) In: European conference on computer vision. Springer, pp 213–229

Zhu X, Su W, Lu L, Li B, Wang X, Dai J (2020) Deformable detr: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159

Fang Y, Liao B, Wang X, Fang J, Qi J, Wu R, Niu J, Liu W (2021) You only look at one sequence: rethinking transformer in vision through object detection. arXiv preprint arXiv: 2106.00666

Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861

Lin TY, P. Dollár, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2117–2125

Dong Y, Cordonnier JB, Loukas A (2021) Attention is not all you need: pure attention loses rank doubly exponentially with depth. arXiv preprint arXiv:2103.03404

Zhang Z, He T, Zhang H, Zhang Z, Xie J, Li M (2019) Bag of freebies for training object detection neural networks. arXiv preprint arXiv:1902.04103

Touvron H, Cord M, Sablayrolles A, Synnaeve G, Jégou H (2021) Going deeper with image transformers. arXiv preprint arXiv:2103.17239

Kong T, Sun F, Yao A, Liu H, Lu M, Chen Y (2017) Ron: reverse connection with objectness prior networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5936–5944

Fu CY, Liu W, Ranga A, Tyagi A, Berg AC (2017) DSSD: deconvolutional single shot detector. arXiv preprint arXiv:1701.06659

Zhang S, Wen L, Bian X, Lei Z, Li SZ (2018) Single-shot refinement neural network for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4203–4212

Wang K, Lin L, Yan X, Chen Z, Zhang D, Zhang L (2018) Cost-effective object detection: active sample mining with switchable selection criteria. IEEE Trans Neural Netw Learn Syst 30(3):834–850

Article

Google Scholar

Bell S, Zitnick CL, Bala K, Girshick R (2016) Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2874–2883

Shrivastava A, Gupta A, Girshick R (2016) Training region-based object detectors with online hard example mining. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 761–769

Kong T, Yao A, Chen Y, Sun F (2016) Hypernet: towards accurate region proposal generation and joint object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 845–853

Liu Z, Du J, Tian F, Wen J (2019) Mr-CNN: a multi-scale region-based convolutional neural network for small traffic sign recognition. IEEE Access 7:57120–57128

Article

Google Scholar

Nie J, Anwer RM, Cholakkal H, Khan FS, Pang Y, Shao L (2019) Enriched feature guided refinement network for object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 9537–9546

Zhao Q, Sheng T, Wang Y, Tang Z, Chen Y, Cai L, Ling H (2019) M2det: A single-shot object detector based on multi-level feature pyramid network. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, pp 9259–9266

Cao J, Pang Y, Han J, Li X (2019) Hierarchical shot detector. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 9705–9714

Li S, Yang L, Huang J, Hua XS, Zhang L (2019) Dynamic anchor feature selection for single-shot object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 6609–6618

Tan M, Pang R, Le QV (2020) Efficientdet: Scalable and efficient object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10781–10790

Wang T, Anwer RM, Cholakkal H, Khan FS, Pang Y, Shao L (2019) Learning rich features at high-speed for single-shot object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 1971–1980

Deng L, Yang M, Li T, He Y, Wang C (2019) Rfbnet: deep multimodal networks with residual fusion blocks for RGB-d semantic segmentation. arXiv preprint arXiv:1907.00135

Permalink -

https://repository.canterbury.ac.uk/item/915w2/transformers-only-look-once-with-nonlinear-combination-for-real-time-object-detection

Restricted files

Accepted author manuscript

  • 27
    total views
  • 1
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Deviation detection in clinical pathways based on business alignment
Tian, Y., Li, X., Qi, Man, Han, D. and Du, Yuyue 2022. Deviation detection in clinical pathways based on business alignment. Scientific Programming. 2022, pp. 1-13. https://doi.org/10.1155/2022/6993449
Security vulnerabilities of popular smart home appliances
Qi, M., Induruwa, A. and Hussain, F. 2021. Security vulnerabilities of popular smart home appliances. in: Proceeding of The Twentieth International Conference on Networks April 18, 2021 to April 22, 2021 - Porto, Portugal
Improved adaptive genetic algorithm for the vehicle insurance fraud identification model based on a BP neural network
Yan, C., Li, M., Liu, W. and Qi, M. 2020. Improved adaptive genetic algorithm for the vehicle insurance fraud identification model based on a BP neural network. Theoretical Computer Science. 817, pp. 12-23. https://doi.org/10.1016/j.tcs.2019.06.025
Hybrid Intrusion Detection System for Smart Home Applications
Hussain, Fida, Induruwa, Abhaya and Qi, Man 2020. Hybrid Intrusion Detection System for Smart Home Applications. in: Mahmood, Z. (ed.) Developing and Monitoring Smart Environments for Intelligent Cities IGI Global. pp. 300-322
Payments per claim model of outstanding claims reserve based on fuzzy linear regression
Yan, C., Liu, Q., Liu, J., Liu, W., Li, M. and Qi, M. 2019. Payments per claim model of outstanding claims reserve based on fuzzy linear regression. International Journal of Fuzzy Systems. 21, pp. 1950-1960. https://doi.org/10.1007/s40815-019-00617-x
Fuzzy interacting multiple model H∞ particle filter algorithm based on current statistical model
Wang, Q., Chen, X., Zhang, L., Li, J., Zhao, C. and Qi, M. 2019. Fuzzy interacting multiple model H∞ particle filter algorithm based on current statistical model. International Journal of Fuzzy Systems. 21, pp. 1894-1905. https://doi.org/10.1007/s40815-019-00678-y
Temporal sparse feature auto-combination deep network for video action recognition
Wang, Q., Gong, D., Qi, M., Shen, Y. and Lei, Y. 2018. Temporal sparse feature auto-combination deep network for video action recognition. Concurrency and Computation: Practice and Experience. https://doi.org/10.1002/cpe.4487
Soundness analytics of composed logical workflow nets
Liu, W., Wang, L., Feng, X., Qi, M., Yan, C. and Li, M. 2017. Soundness analytics of composed logical workflow nets. International Journal of Parallel Programming. https://doi.org/10.1007/s10766-017-0536-8
A sliding window-based dynamic load balancing for heterogeneous Hadoop clusters
Liu, Y., Jing, W., Liu, Y., Lv, L., Qi, M. and Xiang, Y. 2016. A sliding window-based dynamic load balancing for heterogeneous Hadoop clusters. Concurrency and Computation: Practice and Experience. 29 (3). https://doi.org/10.1002/cpe.3763
Gaussian-Gamma collaborative filtering: a hierarchical Bayesian model for recommender systems
Luo, C., Zhang, B., Xiang, Y. and Qi, M. 2017. Gaussian-Gamma collaborative filtering: a hierarchical Bayesian model for recommender systems. Journal of Computer and System Sciences. https://doi.org/10.1016/j.jcss.2017.03.007
Facilitating visual surveillance with motion detections
Qi, M. 2017. Facilitating visual surveillance with motion detections. Concurrency and Computation: Practice and Experience. 29 (3). https://doi.org/10.1002/cpe.3770
Data security of android applications
Obiri-Yeboah, J. and Qi, M. 2016. Data security of android applications. in: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery : ICNC-FSKD 2016 : 13-15 August, Changsha, China IEEE Xplore.
AL-DDCNN : a distributed crossing semantic gap learning for person re-identification
Cheng, K., Zhan, Y. and Qi, M. 2017. AL-DDCNN : a distributed crossing semantic gap learning for person re-identification. Concurrency and Computation: Practice and Experience. 29 (3). https://doi.org/10.1002/cpe.3766
Integration of link and semantic relations for information recommendation
Zhao, Q., He, Y., Wang, P., Jiang, C. and Qi, M. 2016. Integration of link and semantic relations for information recommendation. Computing and Informatics. 35 (1), pp. 30-54.
Data-driven pedestrian re-identification based on hierarchical semantic representation
Cheng, K., Xu, F., Tao, F., Qi, M. and Li, M. 2018. Data-driven pedestrian re-identification based on hierarchical semantic representation. Concurrency and Computation: Practice and Experience. 30 (23). https://doi.org/10.1002/cpe.4403
Integrated privacy preserving framework for smart home
Qi, M. and Hussain, F. 2018. Integrated privacy preserving framework for smart home. in: Proceedings of The 14th International Conference on Fuzzy Systems and Knowledge Discovery, 28-30 July 2018 in Huangshan, China.
Parallelizing abnormal event detection in crowded scenes with GPU
Yavari, M., Li, M., Li, S. and Qi, M. 2015. Parallelizing abnormal event detection in crowded scenes with GPU.
Big data management in digital forensics
Qi, M. 2014. Big data management in digital forensics. in: 2014 IEEE 17th International Conference on Computational Science and Engineering (CSE) IEEE. pp. 238-243
Digital forensics and NoSQL databases
Qi, M. 2014. Digital forensics and NoSQL databases. in: Proceedings of the 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2014 IEEE. pp. 734-739
Employing neural networks for DDoS detection
Qi, M. 2014. Employing neural networks for DDoS detection.
A MapReduce based distributed LSI for scalable information retrieval
Liu, Y., Li, M., Khan, M. and Qi, M. 2014. A MapReduce based distributed LSI for scalable information retrieval. Computing and Informatics. 33 (2), pp. 259-280.
Clear up grey areas: cybercrime legislation progress in China
Qi, M. 2013. Clear up grey areas: cybercrime legislation progress in China.
A resource aware MapReduce based parallel SVM for large scale image classification
Guo, W., Khalid, N., Liu, Y., Li, M., Qi, M., Guo, W., Khalid, N., Liu, Y., Li, M. and Qi, M. 2015. A resource aware MapReduce based parallel SVM for large scale image classification. Neural Processing Letters. 44 (1), pp. 161-184.
Social media in law enforcement: the role and issues
Qi, M. 2012. Social media in law enforcement: the role and issues.
A distributed storage system for archiving broadcast media content
Cherry, D., Li, M. and Qi, M. 2012. A distributed storage system for archiving broadcast media content. in: Grid and Cloud Computing: Concepts, Methodologies, Tools and Applications IGI Global. pp. 669-679
A distributed SVM ensemble for image classification and annotation
Alham, M., Li, M., Liu, Y., Ponraj, M. and Qi, M. 2012. A distributed SVM ensemble for image classification and annotation. in: 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) IEEE. pp. 1581-1584
Computer forensics in communication networks
Wang, Y. and Qi, M. 2012. Computer forensics in communication networks. in: IET International Communication Conference on Wireless Mobile and Computing (CCWMC 2011) Curran.
A MapReduce based parallel SVM for large scale spam filtering
Caruana, G., Li, M. and Qi, M. 2011. A MapReduce based parallel SVM for large scale spam filtering. in: Caruana, G. (ed.) Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2011 IEEE.
Cyber safety in schools
Qi, M. 2011. Cyber safety in schools.
The social effects of spam
Mousoli, R., Qi, M. and Edgar-Nevill, D. 2008. The social effects of spam. in: Edgar-Nevill, D. (ed.) Proceedings of CFET 2008 – 2nd Annual International Conference on Cybercrime Forensics Education and Training Canterbury Canterbury Christ Church University. pp. 71-78
A distributed SVM ensemble for large scale image classification and annotation
Alham, K., Li, M., Liu, Y. and Qi, M. 2013. A distributed SVM ensemble for large scale image classification and annotation. Computers and Mathematics with Applications. 66 (10), pp. 1920-1934. https://doi.org/10.1016/j.camwa.2013.07.015
Fast implementation of cel-based animation
Qi, M. 2008. Fast implementation of cel-based animation.
A case-based reasoning model for digital intrusion forensics
Qi, M., Wang, Y. and Xu, R. 2008. A case-based reasoning model for digital intrusion forensics.
Cybercrime legislation in China
Qi, M., Wang, Y. and Xu, R. 2008. Cybercrime legislation in China.
P2P DDoS: Challenges and Countermeasures
Qi, M. 2009. P2P DDoS: Challenges and Countermeasures.
Distributed indexing for resource discovery in P2P(Peer to Peer) networks
Qi, M., Hentschel, M., Li, M. and Ponraj, M. 2009. Distributed indexing for resource discovery in P2P(Peer to Peer) networks.
P2P(peer to peer) network-targeted DDoS(distributed denial-of-service attacks)
Qi, M. 2009. P2P(peer to peer) network-targeted DDoS(distributed denial-of-service attacks).
Spam and social effects
Qi, M., Edgar-Nevill, D. and Mousoli, R. 2009. Spam and social effects.
Footprints of cyber criminals
Qi, M. and Edgar-Nevill, D. 2007. Footprints of cyber criminals.
Tracking email offenders
Edgar-Nevill, D. and Qi, M. 2007. Tracking email offenders.
Protecting intellectual property and computer software: legislation in China
Qi, M. and Wang, Y. 2010. Protecting intellectual property and computer software: legislation in China.
Machine learning based spam filtering: advantages and challenges
Qi, M. 2010. Machine learning based spam filtering: advantages and challenges.
OBIRE: ontology based bibliographic information publication and retrieval
Liu, X., Li, M., Liu, Y. and Qi, M. 2010. OBIRE: ontology based bibliographic information publication and retrieval. International Journal of Distributed Systems and Technologies. 1 (4), pp. 58-73.
Cybercrime and relevant legislation in China
Qi, M. and Wang, Y. 2010. Cybercrime and relevant legislation in China. in: Reich, P. (ed.) Cybercrime and Security Oxford Oxford University Press. pp. 1-34
Semantic analysis for spam filtering
Qi, M. and Mousoli, R. 2010. Semantic analysis for spam filtering.
MAPBOT: A web based map information retrieval system
Li, M. and Qi, M. 2003. MAPBOT: A web based map information retrieval system. Information and Software Technology. 45 (10), pp. 691-698. https://doi.org/10.1016/S0950-5849(03)00082-X
Leveraging legacy codes to distributed problem-solving environments: a web services approach
Li, M. and Qi, M. 2004. Leveraging legacy codes to distributed problem-solving environments: a web services approach. Software: Practice and Experience. 34 (13), pp. 1297-1309. https://doi.org/10.1002/spe.614
PGGA: a predictable and grouped genetic algorithm for job scheduling
Li, M., Yu, B. and Qi, M. 2006. PGGA: a predictable and grouped genetic algorithm for job scheduling. Future Generation Computer Systems. 22 (5), pp. 588-599. https://doi.org/10.1016/j.future.2005.09.001
Lessons learned from Beijing for the London 2012
Edgar-Nevill, D. and Qi, M. 2009. Lessons learned from Beijing for the London 2012. in: Edgar-Nevill, D. (ed.) Proceedings of the 3rd International Conference on Cybercrime Forensics Euducation and Training CFET 2009 Canterbury, UK Canterbury Christ Church University.
Tracking online trails
Qi, M., Edgar-Nevill, D., Wang, Y. and Xu, R. 2008. Tracking online trails. in: Jahankhani, H., Revett, K. and Palmer-Brown, D. (ed.) Global E-Security Springer.
Web services discovery with rough sets
Li, M., Yu, B., Sahota, V. and Qi, M. 2009. Web services discovery with rough sets. International Journal of Web Services Research. 6 (1), pp. 69-86.
Facilitating resource discovery in grid environments with peer-to-peer structured tuple spaces
Li, M. and Qi, M. 2009. Facilitating resource discovery in grid environments with peer-to-peer structured tuple spaces. Peer-to-Peer Networking and Applications. 2 (4), pp. 283-297. https://doi.org/10.1007/s12083-009-0036-8
Optimizing peer selection in BitTorrent networks with genetic algorithms
Wu, T., Li, M. and Qi, M. 2010. Optimizing peer selection in BitTorrent networks with genetic algorithms. Future Generation Computer Systems. 26 (8), pp. 1151-1156. https://doi.org/10.1016/j.future.2010.05.016
Automatically wrapping legacy software into services: a grid case study
Li, M., Yu, B., Qi, M. and Antonopoulos, N. 2008. Automatically wrapping legacy software into services: a grid case study. Peer-to-Peer Networking and Applications. 1 (2), pp. 139-147. https://doi.org/10.1007/s12083-008-0011-9
Tracking online trails
Qi, M., Edgar-Nevill, D., Wang, Y. and Xu, R. 2008. Tracking online trails. International Journal of Electronic Security and Digital Forensics. 1 (4), pp. 353-361. https://doi.org/10.1504/IJESDF.2008.021453
Social networking searching and privacy issues
Qi, M. and Edgar-Nevill, D. 2011. Social networking searching and privacy issues. Information Security Technical Report. 16 (2), pp. 74-78. https://doi.org/10.1016/j.istr.2011.09.005
A WSRF based shopping cart system
Li, M., Qi, M., Rozati, M. and Yu, B. 2005. A WSRF based shopping cart system. Lecture Notes in Computer Science [Advances in Grid Computing (EGC) 2005 European Grid Conference, Amsterdam, The Netherlands, February 14-16, 2005, Revised Selected Papers]. 3470, pp. 105-137. https://doi.org/10.1007/b137919
Fighting cybercrime: legislation in China
Qi, M., Wang, Y. and Xu, R. 2009. Fighting cybercrime: legislation in China. International Journal of Electronic Security and Digital Forensics. 2 (2), pp. 219-227. https://doi.org/10.1504/IJESDF.2009.024905
Service composition with Al planning
Qi, M. 2009. Service composition with Al planning. in: Li, M. and Yu, B. (ed.) Cyberinfrastructure Technologies and Applications Nova Science Publishers. pp. 179-197