Deviation detection in clinical pathways based on business alignment
Journal article
Tian, Y., Li, X., Qi, Man, Han, D. and Du, Yuyue 2022. Deviation detection in clinical pathways based on business alignment. Scientific Programming. 2022, pp. 1-13. https://doi.org/10.1155/2022/6993449
Authors | Tian, Y., Li, X., Qi, Man, Han, D. and Du, Yuyue |
---|---|
Abstract | Several unexpected behaviors may occur during actual treatment of clinical pathways, which will have negative impact on the implementation and the future work. To increase the performance of current deviation detection algorithms, a method is presented according to business alignment, which can effectively detect the anomaly in the implementation of the clinical pathways, provide judgment basis for the intervention in the process of the clinical pathway implementation, and play a crucial role in improving the clinical pathways. Firstly, the noise in diagnosis and treatment logs of clinical pathways will be removed. Then, the synchronous composition model is constructed to embody the deviations between the actual process and the theoretical model. Finally, A ∗ algorithm is selected to search for optimal alignment. A clinical pathway for ST-Elevation Myocardial Infarction (STEMI) under COVID-19 is used as a case study, and the superiority and effectiveness of this method in deviation detection are illustrated in the result of experiments. |
Keywords | Computer science applications; Software |
Year | 2022 |
Journal | Scientific Programming |
Journal citation | 2022, pp. 1-13 |
Publisher | Hindawi Limited |
ISSN | 1875-919X |
1058-9244 | |
Digital Object Identifier (DOI) | https://doi.org/10.1155/2022/6993449 |
Official URL | https://www.hindawi.com/journals/sp/2022/6993449/ |
Funder | National Natural Science Foundation of China |
Publication dates | |
Online | 06 Jan 2022 |
Online | 06 Jan 2022 |
06 Jan 2022 | |
Publication process dates | |
Accepted | 14 Dec 2021 |
Deposited | 10 Jan 2022 |
Publisher's version | License |
Output status | Published |
References | [1] S. Chu, "Reconceptualising clinical pathway system design," Collegian, vol. 8, no. 1, pp. 33-36, 2001. |
https://repository.canterbury.ac.uk/item/8zz9q/deviation-detection-in-clinical-pathways-based-on-business-alignment
Download files
38
total views8
total downloads0
views this month0
downloads this month
Export as
Related outputs
Repairing process models with non-free-choice constructs based on token replay
Bai, E., Qi, M., Luan, W., Li, P. and Du, Y. 2022. Repairing process models with non-free-choice constructs based on token replay. Computing and Informatics. 41 (4), pp. 1054-1077. https://doi.org/10.31577/cai_2022_4_1054Transformers only look once with nonlinear combination for real-time object detection
Xia, R., Li, G., Huang, Z., Pang, Y. and Qi, M. 2022. Transformers only look once with nonlinear combination for real-time object detection. Neural Computing and Applications. https://doi.org/10.1007/s00521-022-07333-ySecurity vulnerabilities of popular smart home appliances
Qi, M., Induruwa, A. and Hussain, F. 2021. Security vulnerabilities of popular smart home appliances. in: Proceeding of The Twentieth International Conference on Networks April 18, 2021 to April 22, 2021 - Porto, PortugalImproved adaptive genetic algorithm for the vehicle insurance fraud identification model based on a BP neural network
Yan, C., Li, M., Liu, W. and Qi, M. 2020. Improved adaptive genetic algorithm for the vehicle insurance fraud identification model based on a BP neural network. Theoretical Computer Science. 817, pp. 12-23. https://doi.org/10.1016/j.tcs.2019.06.025Hybrid Intrusion Detection System for Smart Home Applications
Hussain, Fida, Induruwa, Abhaya and Qi, Man 2020. Hybrid Intrusion Detection System for Smart Home Applications. in: Mahmood, Z. (ed.) Developing and Monitoring Smart Environments for Intelligent Cities IGI Global. pp. 300-322Payments per claim model of outstanding claims reserve based on fuzzy linear regression
Yan, C., Liu, Q., Liu, J., Liu, W., Li, M. and Qi, M. 2019. Payments per claim model of outstanding claims reserve based on fuzzy linear regression. International Journal of Fuzzy Systems. 21, pp. 1950-1960. https://doi.org/10.1007/s40815-019-00617-xFuzzy interacting multiple model H∞ particle filter algorithm based on current statistical model
Wang, Q., Chen, X., Zhang, L., Li, J., Zhao, C. and Qi, M. 2019. Fuzzy interacting multiple model H∞ particle filter algorithm based on current statistical model. International Journal of Fuzzy Systems. 21, pp. 1894-1905. https://doi.org/10.1007/s40815-019-00678-yTemporal sparse feature auto-combination deep network for video action recognition
Wang, Q., Gong, D., Qi, M., Shen, Y. and Lei, Y. 2018. Temporal sparse feature auto-combination deep network for video action recognition. Concurrency and Computation: Practice and Experience. https://doi.org/10.1002/cpe.4487Soundness analytics of composed logical workflow nets
Liu, W., Wang, L., Feng, X., Qi, M., Yan, C. and Li, M. 2017. Soundness analytics of composed logical workflow nets. International Journal of Parallel Programming. https://doi.org/10.1007/s10766-017-0536-8A sliding window-based dynamic load balancing for heterogeneous Hadoop clusters
Liu, Y., Jing, W., Liu, Y., Lv, L., Qi, M. and Xiang, Y. 2016. A sliding window-based dynamic load balancing for heterogeneous Hadoop clusters. Concurrency and Computation: Practice and Experience. 29 (3). https://doi.org/10.1002/cpe.3763Gaussian-Gamma collaborative filtering: a hierarchical Bayesian model for recommender systems
Luo, C., Zhang, B., Xiang, Y. and Qi, M. 2017. Gaussian-Gamma collaborative filtering: a hierarchical Bayesian model for recommender systems. Journal of Computer and System Sciences. https://doi.org/10.1016/j.jcss.2017.03.007Facilitating visual surveillance with motion detections
Qi, M. 2017. Facilitating visual surveillance with motion detections. Concurrency and Computation: Practice and Experience. 29 (3). https://doi.org/10.1002/cpe.3770Data security of android applications
Obiri-Yeboah, J. and Qi, M. 2016. Data security of android applications. in: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery : ICNC-FSKD 2016 : 13-15 August, Changsha, China IEEE Xplore.AL-DDCNN : a distributed crossing semantic gap learning for person re-identification
Cheng, K., Zhan, Y. and Qi, M. 2017. AL-DDCNN : a distributed crossing semantic gap learning for person re-identification. Concurrency and Computation: Practice and Experience. 29 (3). https://doi.org/10.1002/cpe.3766