PGGA: a predictable and grouped genetic algorithm for job scheduling
Journal article
Li, M., Yu, B. and Qi, M. 2006. PGGA: a predictable and grouped genetic algorithm for job scheduling. Future Generation Computer Systems. 22 (5), pp. 588-599. https://doi.org/10.1016/j.future.2005.09.001
Authors | Li, M., Yu, B. and Qi, M. |
---|---|
Keywords | Job scheduling, Job workload estimation, Divisible load theory, Predictable genetic algorithm, Load balancing |
Year | 2006 |
Journal | Future Generation Computer Systems |
Journal citation | 22 (5), pp. 588-599 |
Publisher | Elsevier |
ISSN | 0167-739X |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.future.2005.09.001 |
Publication dates | |
Apr 2006 | |
Publication process dates | |
Deposited | 23 Mar 2011 |
Output status | Published |
Permalink -
https://repository.canterbury.ac.uk/item/852y4/pgga-a-predictable-and-grouped-genetic-algorithm-for-job-scheduling
94
total views0
total downloads2
views this month0
downloads this month